Open Access. Powered by Scholars. Published by Universities.®

Botany Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

University of Missouri, St. Louis

2014

Articles 1 - 1 of 1

Full-Text Articles in Botany

[Accepted Article Manuscript Version (Postprint)] Auxin Input Pathway Disruptions Are Mitigated By Changes In Auxin Biosynthetic Gene Expression In Arabidopsis, Gretchen Spiess, Amanda Hausman, Peng Yu, Jerry Cohen, Rebekah Rampey, Bethany Zolman Jul 2014

[Accepted Article Manuscript Version (Postprint)] Auxin Input Pathway Disruptions Are Mitigated By Changes In Auxin Biosynthetic Gene Expression In Arabidopsis, Gretchen Spiess, Amanda Hausman, Peng Yu, Jerry Cohen, Rebekah Rampey, Bethany Zolman

Biology Department Faculty Works

Auxin is a phytohormone involved in cell elongation and division. Levels of indole-3-acetic acid (IAA), the primary auxin, are tightly regulated through biosynthesis, degradation, sequestration, and transport. IAA is sequestered in reversible processes by adding amino acids, polyol or simple alcohols, or sugars, forming IAA conjugates, or through a two-carbon elongation forming indole-3-butyric acid. These sequestered forms of IAA alter hormone activity. To gain a better understanding of how auxin homeostasis is maintained, we have generated Arabidopsis (Arabidopsis thaliana) mutants that combine disruptions in the pathways, converting IAA conjugates and indole-3-butyric acid to free IAA. These mutants show phenotypes indicative …