Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physiology

The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut Aug 2023

The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut

Electronic Thesis and Dissertation Repository

The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. Additionally, the molecular mechanisms mediating RT-induced improvements in insulin sensitivity remain unclear. Therefore, the purpose of this study was to investigate the effects of RT on IR development in female …


Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum Dec 2022

Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum

Electronic Theses and Dissertations

Regular aerobic exercise promotes physiological cardiac growth, which is an adaptive response thought to enable the heart to meet higher physical demands. Cardiac growth involves coordination of catabolic and anabolic activities to support ATP generation, macromolecule biosynthesis, and myocyte hypertrophy. Although previous studies suggest that exercise-induced reductions in cardiac glycolysis are critical for physiological myocyte hypertrophy, it remains unclear how exercise influences the many interlinked pathways of metabolism that support adaptive remodeling of the heart. In this thesis project, we tested the general hypothesis that aerobic exercise promotes physiological cardiac growth by coordinating myocardial metabolism to promote glucose-supported anabolic pathway …


Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden Jul 2021

Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden

Masters Theses

Substantial evidence exists regarding how skeletal muscles use energy and how this affects muscular performance. What remains unclear is how characteristics of muscle energetics affect whole-body energetics during daily living, and what effects this may have on mobility. The goal of this study was to determine the associations between muscle and whole-body energetics including the relationships between: 1) muscle PCr depletion (∆PCr) in response to light intensity isotonic contractions and the oxygen deficit at the onset of a 30-min treadmill walk (30MTW), and, 2) muscle oxidative capacity and excess post-exercise oxygen consumption (EPOC; 30MTW), respiratory exchange ratio (RER; 30MTW), and …


Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz May 2020

Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz

Honors Theses

Malignant breast cancers exhibit preferential metastasis to bone and lung (1). While changes in gene expression in lung-specific (LM) and bone-specific metastasis (BoM) lines derived from the MDA-MB-231 breast cancer line have been identified, few metabolic genes are differentially expressed; thus it is unknown if tissue-specific metabolic reprogramming occurs. Two hallmarks of cancer cells are an altered metabolic phenotype characterized by enhanced conversion of glucose to lactate in spite of adequate oxygen availability for complete mitochondrial oxidation of this substrate (referred to as aerobic glycolysis or the Warburg effect) and a greater dependence on glutamine. These changes in primary tumor …


Regulation Of Liver Mitochondrial Metabolism During Hibernation By Post-Translational Modification, Katherine E. Mathers Dec 2017

Regulation Of Liver Mitochondrial Metabolism During Hibernation By Post-Translational Modification, Katherine E. Mathers

Electronic Thesis and Dissertation Repository

Hibernation, characterized by a seasonal reduction in metabolism and body temperature, allows animals to conserve energy when environmental conditions (e.g. temperature, food availability) are unfavourable. During hibernation, small mammals such as the 13-lined ground squirrel (Ictidomys tridecemlineatus) cycle between two distinct metabolic states: torpor, where metabolic rate is suppressed by >95% and body temperature falls to ~5 °C, and interbout euthermia (IBE), where metabolic rate and body temperature rapidly increase and are maintained at euthermic levels several hours. Suppression of metabolism during entrance into torpor is paralleled by rapid suppression of liver mitochondrial metabolism. In my thesis, I …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid Aug 2012

Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid

STAR Program Research Presentations

Acetaminophen is a common analgesic and antipyretic. Metabolism of acetaminophen and acetaminophen-induced liver necrosis are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drug is distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Acetaminophen is usually safe and effective when taken as recommended, but consumption at higher levels may lead to liver damage. Additionally, other factors such as alcoholic liver disease, smoking, and malnutrition affect the maximum safe dose of acetaminophen.


Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …