Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Chronic Muscle Weakness And Mitochondrial Dysfunction In The Absence Of Sustained Atrophy In A Preclinical Sepsis Model, Allison M. Owen, Samir P. Patel, Jeffrey D. Smith, Beverly K. Balasuriya, Stephanie F. Mori, Gregory S. Hawk, Arnold J. Stromberg, Naohide Kuriyama, Masao Kaneki, Alexander G. Rabchevsky, Timothy A. Butterfield, Karyn A. Esser, Charlotte A. Peterson, Marlene E. Starr, Hiroshi Saito Dec 2019

Chronic Muscle Weakness And Mitochondrial Dysfunction In The Absence Of Sustained Atrophy In A Preclinical Sepsis Model, Allison M. Owen, Samir P. Patel, Jeffrey D. Smith, Beverly K. Balasuriya, Stephanie F. Mori, Gregory S. Hawk, Arnold J. Stromberg, Naohide Kuriyama, Masao Kaneki, Alexander G. Rabchevsky, Timothy A. Butterfield, Karyn A. Esser, Charlotte A. Peterson, Marlene E. Starr, Hiroshi Saito

Physiology Faculty Publications

Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of …


Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this …


Effects Of Life-Long Wheel Running Behavior On Plantar Flexor Contractile Properties, Alexander Nicholas Beechko Jun 2019

Effects Of Life-Long Wheel Running Behavior On Plantar Flexor Contractile Properties, Alexander Nicholas Beechko

Electronic Theses, Projects, and Dissertations

Aging in skeletal muscle is characterized by a loss in muscular performance. This is in part related to the direct loss of muscle mass due to senescence, known as sarcopenia. With age, skeletal muscles lose force production, contractile speed, and power production. The force velocity relationship of muscle is a product of force production and contraction speed, both of which decline with age; however, the mechanisms and trajectory of this decline are not well understood. Exercise has positive effects on muscle, and thus may assist in maintaining performance in old age. However, few long-term studies have been performed to examine …


Phase- Specific Changes In Rate Of Force Development And Muscle Morphology Throughout A Block Periodized Training Cycle In Weightlifters, Dylan G. Suarez, Satoshi Mizuguchi, William Guy Hornsby, Aaron J. Cunanan, Donald J. Marsh, Michael H. Stone May 2019

Phase- Specific Changes In Rate Of Force Development And Muscle Morphology Throughout A Block Periodized Training Cycle In Weightlifters, Dylan G. Suarez, Satoshi Mizuguchi, William Guy Hornsby, Aaron J. Cunanan, Donald J. Marsh, Michael H. Stone

ETSU Faculty Works

The purpose of this study was to investigate the kinetic and morphological adaptations that occur during distinct phases of a block periodized training cycle in weightlifters. Athlete monitoring data from nine experienced collegiate weightlifters was used. Isometric mid-thigh pull (IMTP) and ultrasonography (US) results were compared to examine the effects of three specific phases of a training cycle leading up to a competition. During the high volume strength-endurance phase (SE) small depressions in rate of force development (RFD) but statistically significant (p ≤ 0.05) increases in vastus lateralis cross-sectional area (CSA), and body mass (BM) were observed. The lower volume …