Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physiology

Dataset For Manuscript: Comparing Performance Of Spectral Image Analysis Approaches For Detection Of Cellular Signals In Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy, Silas J. Leavesley Jan 2023

Dataset For Manuscript: Comparing Performance Of Spectral Image Analysis Approaches For Detection Of Cellular Signals In Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy, Silas J. Leavesley

BioImaging and BioSystems Research

The dataset contains raw and processed hyperspectral timelapse image data that are described in the manuscript:

Parker, M., Annamdevula, N. S., Pleshinger, D., Ijaz, Z., Jalkh, J., Penn, R., Deshpande, D., Rich, T. C. & Leavesley, S. J. Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy. Bioengineering 10, 642 (2023).


Lung Epithelial Trpa1 Mediates Lipopolysaccharide-Induced Lung Inflammation In Bronchial Epithelial Cells And Mice, Hsin-Kuo Ko, An-Hsuan Lin, Diahn-Warng Perng, Tzong-Shyuan Lee, Yu Ru Kou Nov 2020

Lung Epithelial Trpa1 Mediates Lipopolysaccharide-Induced Lung Inflammation In Bronchial Epithelial Cells And Mice, Hsin-Kuo Ko, An-Hsuan Lin, Diahn-Warng Perng, Tzong-Shyuan Lee, Yu Ru Kou

Physiology Faculty Publications

Toll-like receptor (TLR) 4 was originally thought to be the sole pattern recognition receptor for lipopolysaccharide (LPS). Transient receptor potential ankyrin 1 (TRPA1), a Ca2+-permeant channel, has been suggested as a non-TLR receptor membrane-bound sensor of LPS. We recently reported that TRPA1 is expressed in lung epithelial cells (LECs) and mediates lung inflammation induced by cigarette smoke. However, the role of TRPA1 in LPS-induced lung inflammation has not been conclusively defined, and its underlying cellular mechanisms remain unclear. In this study, our in vitro results showed that LPS sequentially produced a cascade of events, including the elevation of …


Macrophage-Derived Netrin-1 Promotes Abdominal Aortic Aneurysm Formation By Activating Mmp3 In Vascular Smooth Muscle Cells, Tarik Hadi, Ludovic Boytard, Michele Silvestro, Dornazsadat Alebrahim, Samson Jacob, Jordyn Feinstein, Krista Barone, Wes Spiro, Susan Hutchison, Russell Simon, Debra L. Rateri, Florence Pinet, David Fenyo, Mark Adelman, Kathryn J. Moore, Holger K. Eltzschig, Alan Daugherty, Bhama Ramkhelawon Nov 2018

Macrophage-Derived Netrin-1 Promotes Abdominal Aortic Aneurysm Formation By Activating Mmp3 In Vascular Smooth Muscle Cells, Tarik Hadi, Ludovic Boytard, Michele Silvestro, Dornazsadat Alebrahim, Samson Jacob, Jordyn Feinstein, Krista Barone, Wes Spiro, Susan Hutchison, Russell Simon, Debra L. Rateri, Florence Pinet, David Fenyo, Mark Adelman, Kathryn J. Moore, Holger K. Eltzschig, Alan Daugherty, Bhama Ramkhelawon

Physiology Faculty Publications

Abdominal aortic aneurysms (AAA) are characterized by extensive extracellular matrix (ECM) fragmentation and inflammation. However, the mechanisms by which these events are coupled thereby fueling focal vascular damage are undefined. Here we report through single-cell RNA-sequencing of diseased aorta that the neuronal guidance cue netrin-1 can act at the interface of macrophage-driven injury and ECM degradation. Netrin-1 expression peaks in human and murine aneurysmal macrophages. Targeted deletion of netrin-1 in macrophages protects mice from developing AAA. Through its receptor neogenin-1, netrin-1 induces a robust intracellular calcium flux necessary for the transcriptional regulation and persistent catalytic activation of matrix metalloproteinase-3 (MMP3) …


Complement 3a Receptor In Dorsal Horn Microglia Mediates Pronociceptive Neuropeptide Signaling, Suzanne Doolen, Jennifer Cook, Maureen Riedl, Kelley Kitto, Shinichi Kohsaka, Christopher N. Honda, Carolyn A. Fairbanks, Bradley K. Taylor, Lucy Vulchanova Dec 2017

Complement 3a Receptor In Dorsal Horn Microglia Mediates Pronociceptive Neuropeptide Signaling, Suzanne Doolen, Jennifer Cook, Maureen Riedl, Kelley Kitto, Shinichi Kohsaka, Christopher N. Honda, Carolyn A. Fairbanks, Bradley K. Taylor, Lucy Vulchanova

Physiology Faculty Publications

The complement 3a receptor (C3aR1) participates in microglial signaling under pathological conditions and was recently shown to be activated by the neuropeptide TLQP‐21. We previously demonstrated that TLQP‐21 elicits hyperalgesia and contributes to nerve injury‐induced hypersensitivity through an unknown mechanism in the spinal cord. Here we determined that this mechanism requires C3aR1 and that microglia are the cellular target for TLQP‐21. We propose a novel neuroimmune signaling pathway involving TLQP‐21‐induced activation of microglial C3aR1 that then contributes to spinal neuroplasticity and neuropathic pain. This unique dual‐ligand activation of C3aR1 by a neuropeptide (TLQP‐21) and an immune mediator (C3a) represents a …


Optogenetic Stimulation Of Drosophila Heart Rate At Different Temperatures And Ca2+ Concentrations, Yuechen Zhu, Henry Uradu, Zana R. Majeed, Robin L. Cooper Feb 2016

Optogenetic Stimulation Of Drosophila Heart Rate At Different Temperatures And Ca2+ Concentrations, Yuechen Zhu, Henry Uradu, Zana R. Majeed, Robin L. Cooper

Biology Faculty Publications

Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light‐induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature …


Longevity Of Mineral Supplements Within The Soil And Associated Use By White-Tailed Deer, Brian C. Peterson, Keith D. Koupal, Andrew K. Schissel, Cody M. Siegel Dec 2015

Longevity Of Mineral Supplements Within The Soil And Associated Use By White-Tailed Deer, Brian C. Peterson, Keith D. Koupal, Andrew K. Schissel, Cody M. Siegel

Transactions of the Nebraska Academy of Sciences and Affiliated Societies

Humans have baited wildlife such as white-tailed deer (Odocoileus virginianus) for generations with the primary purpose of increasing hunting harvest success. Baiting regulation changes are often considered by state management agencies as they pertain to hunting opportunity, fair chase, and disease risk. Cervids require a variety of minerals to supplement biological processes, especially sodium (Na), calcium (Ca), and phosphorus (P). We developed artificial mineral supplement sites set in front of trail cameras to monitor deer use. Pooled soil samples were collected at mineral sites and compared to the surrounding area to determine the longevity of elevated minerals levels …


A Novel C-Terminal Cib2 (Calcium And Integrin Binding Protein 2) Mutation Associated With Non-Syndromic Hearing Loss In A Hispanic Family, Kunjan Patel, Arnaud P. Giese, J. M. Grossheim, Rashima S. Hegde, Maria Delio, Joy Samanich, Saima Riazuddin, Gregory I. Frolenkov, Jinlu Cai, Zubair M. Ahmed, Bernice E. Morrow Oct 2015

A Novel C-Terminal Cib2 (Calcium And Integrin Binding Protein 2) Mutation Associated With Non-Syndromic Hearing Loss In A Hispanic Family, Kunjan Patel, Arnaud P. Giese, J. M. Grossheim, Rashima S. Hegde, Maria Delio, Joy Samanich, Saima Riazuddin, Gregory I. Frolenkov, Jinlu Cai, Zubair M. Ahmed, Bernice E. Morrow

Physiology Faculty Publications

Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy …


Myocyte Contractility Can Be Maintained By Storing Cells With The Myosin Atpase Inhibitor 2,3 Butanedione Monoxime, Charles S. Chung, Charles Mechas, Kenneth S. Campbell Jun 2015

Myocyte Contractility Can Be Maintained By Storing Cells With The Myosin Atpase Inhibitor 2,3 Butanedione Monoxime, Charles S. Chung, Charles Mechas, Kenneth S. Campbell

Physiology Faculty Publications

Isolated intact myocytes can be used to investigate contractile mechanisms and to screen new therapeutic compounds. These experiments typically require euthanizing an animal and isolating fresh cells each day or analyzing cultured myocytes, which quickly lose their rod-shaped morphology. Recent data suggest that the viability of canine myocytes can be prolonged using low temperature and N-benzyl-p-toluene sulfonamide (an inhibitor of skeletal myosin ATPase). We performed similar studies in rat myocytes in order to test whether the cardiac myosin ATPase inhibitors 2,3-Butanedione monoxime (BDM) and blebbistatin help to maintain cell-level function over multiple days. Myocytes were isolated from rats and separated …


Arrhythmogenic Calmodulin Mutations Disrupt Intracellular Cardiomyocyte Ca2+ Regulation By Distinct Mechanisms, Guo Yin, Faisal Hassan, Ayman R. Haroun, Lisa L. Murphy, Lia Crotti, Peter J. Schwartz, Alfred L. George, Jonathan Satin Jun 2014

Arrhythmogenic Calmodulin Mutations Disrupt Intracellular Cardiomyocyte Ca2+ Regulation By Distinct Mechanisms, Guo Yin, Faisal Hassan, Ayman R. Haroun, Lisa L. Murphy, Lia Crotti, Peter J. Schwartz, Alfred L. George, Jonathan Satin

Physiology Faculty Publications

BACKGROUND: Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia-susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS-associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+-dependent inactivation of L-type Ca2+ current.

METHODS AND RESULTS: We coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS- and CPVT-associated CaM …


Effect Of Muscle Length On Cross-Bridge Kinetics In Intact Cardiac Trabeculae At Body Temperature, Nima Milani-Nejad, Ying Xu, Jonathan P. Davis, Kenneth S. Campbell, Paul M. L. Janssen Dec 2012

Effect Of Muscle Length On Cross-Bridge Kinetics In Intact Cardiac Trabeculae At Body Temperature, Nima Milani-Nejad, Ying Xu, Jonathan P. Davis, Kenneth S. Campbell, Paul M. L. Janssen

Physiology Faculty Publications

Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends …


Peripheral Nerve Injury Increases Glutamate-Evoked Calcium Mobilization In Adult Spinal Cord Neurons, Suzanne Doolen, Camille B. Blake, Bret N. Smith, Bradley K. Taylor Jul 2012

Peripheral Nerve Injury Increases Glutamate-Evoked Calcium Mobilization In Adult Spinal Cord Neurons, Suzanne Doolen, Camille B. Blake, Bret N. Smith, Bradley K. Taylor

Physiology Faculty Publications

BACKGROUND: Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of …


Mice Deficient In Gem Gtpase Show Abnormal Glucose Homeostasis Due To Defects In Beta-Cell Calcium Handling, Jenny E. Gunton, Mary Sisavanh, Rebecca A. Stokes, Jon Satin, Leslie S. Satin, Min Zhang, Sue M. Liu, Weikang Cai, Kim Cheng, Gregory J. Cooney, D. Ross Laybutt, Trina So, Juan-Carlos Molero, Shane T. Grey, Douglas A. Andres, Michael S. Rolph, Charles R. Mackay Jun 2012

Mice Deficient In Gem Gtpase Show Abnormal Glucose Homeostasis Due To Defects In Beta-Cell Calcium Handling, Jenny E. Gunton, Mary Sisavanh, Rebecca A. Stokes, Jon Satin, Leslie S. Satin, Min Zhang, Sue M. Liu, Weikang Cai, Kim Cheng, Gregory J. Cooney, D. Ross Laybutt, Trina So, Juan-Carlos Molero, Shane T. Grey, Douglas A. Andres, Michael S. Rolph, Charles R. Mackay

Physiology Faculty Publications

AIMS AND HYPOTHESIS: Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo.

METHODS: Gem-deficient mice were generated and their metabolic phenotype characterised by in …


Store-Operated Ca(2+) Entry (Soce) Contributes To Normal Skeletal Muscle Contractility In Young But Not In Aged Skeletal Muscle, Angela M. Thornton, Xiaoli Zhao, Noah Weisleder, Leticia S. Brotto, Sylvain Bougoin, Thomas M. Nosek, Michael B. Reid, Brian Hardin, Zui Pan, Jianjie Ma, Jerome Parness, Marco Brotto Jun 2011

Store-Operated Ca(2+) Entry (Soce) Contributes To Normal Skeletal Muscle Contractility In Young But Not In Aged Skeletal Muscle, Angela M. Thornton, Xiaoli Zhao, Noah Weisleder, Leticia S. Brotto, Sylvain Bougoin, Thomas M. Nosek, Michael B. Reid, Brian Hardin, Zui Pan, Jianjie Ma, Jerome Parness, Marco Brotto

Physiology Faculty Publications

Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular …


Mip/Mtmr14 And Muscle Aging, Scott K. Powers, Michael B. Reid Sep 2010

Mip/Mtmr14 And Muscle Aging, Scott K. Powers, Michael B. Reid

Physiology Faculty Publications

No abstract.


3,4-Methylenedioxymethamphetamine Activates Nuclear Factor- Κb, Increases Intracellular Calcium, And Modulates Gene Transcription In Rat Heart Cells, David A. Tiangco, Frank A. Lattanzio Jr., Christopher J. Osgood, Stephen J. Beebe, Julie A. Kerry, Barbara Y. Hargrave Jan 2005

3,4-Methylenedioxymethamphetamine Activates Nuclear Factor- Κb, Increases Intracellular Calcium, And Modulates Gene Transcription In Rat Heart Cells, David A. Tiangco, Frank A. Lattanzio Jr., Christopher J. Osgood, Stephen J. Beebe, Julie A. Kerry, Barbara Y. Hargrave

Biological Sciences Faculty Publications

3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug that has gained immense popularity among teenagers and young adults. The cardiovascular toxicological consequences of abusing this compound have not been fully characterized. The present study utilized a transient transfection/dual luciferase genetic reporter assay, fluorescence confocal microscopy, and gene expression macroarray technology to determine nuclear factor-κB (NF-κB) activity, intracellular calcium balance, mitochondrial depolarization, and gene transcription profiles, respectively, in cultured rat striated cardiac myocytes (H9c2) exposed to MDMA. At concentrations of 1×10−3 M and 1×10−2 M, MDMA significantly enhanced NF-κB reporter activity compared with 0 M (medium only) control. This …