Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physiology

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne Dec 2016

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.


The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias Nov 2016

The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent …


Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba Sep 2016

Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and …


Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba Sep 2016

Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu …


Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba May 2016

Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys32 of B. subtilis EF-P that is …


Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


The Sh3 Domain Of Unc-89 (Obscurin) Interacts With Paramyosin, A Coiled-Coil Protein, In Caenorhabditis Elegans Muscle, Hiroshi Qadota, Jonathan Mcmurry, Verra M. Ngwa, Et Al. May 2016

The Sh3 Domain Of Unc-89 (Obscurin) Interacts With Paramyosin, A Coiled-Coil Protein, In Caenorhabditis Elegans Muscle, Hiroshi Qadota, Jonathan Mcmurry, Verra M. Ngwa, Et Al.

Faculty and Research Publications

UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89’s SH3 domain and residues 294–376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found …


Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba May 2016

Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond …


Connecting The Physiological And Behavioral Response To Heat Stress On A Warming Planet, Anastasia Kalyta May 2016

Connecting The Physiological And Behavioral Response To Heat Stress On A Warming Planet, Anastasia Kalyta

Student Scholar Symposium Abstracts and Posters

Intertidal communities are considered good models of the biological effects of climate change on ecosystems, as their resident organisms are subjected to heat spells during daytime low tides. The increasing heat exposure can elicit behavioral as well as physiological responses in intertidal organisms. We studied the relationship between these responses to heat stress in the blue-banded hermit crab, Pagurus samuelis, by inducing a “heat shock” with elevated water temperature of 29 °C for 2.5 h. The behavioral effect of heat-shock was quantified using a 30-minute feeding assay, measuring the mass of a standard squid pellet consumed by individual hermit crabs. …


Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf May 2016

Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here …


The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert Apr 2016

Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance …


Localisation And Protein-Protein Interactions Of The Helicobacter Pylori Taxis Sensor T1pd And Their Connection To Metabolic Functions, Wiebke Behrens, Tobias Schweinitzer, Jonathan L. Mcmurry, Christine Josenhans Apr 2016

Localisation And Protein-Protein Interactions Of The Helicobacter Pylori Taxis Sensor T1pd And Their Connection To Metabolic Functions, Wiebke Behrens, Tobias Schweinitzer, Jonathan L. Mcmurry, Christine Josenhans

Faculty and Research Publications

The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was …


Hoxd Expression In The Fin-Fold Compartment Of Basal Gnathostomes And Implications For Paired Appendage Evolution, Frank J. Tulenko, Gaius J. Augustus, James L. Massey, Seth E. Sims Mar 2016

Hoxd Expression In The Fin-Fold Compartment Of Basal Gnathostomes And Implications For Paired Appendage Evolution, Frank J. Tulenko, Gaius J. Augustus, James L. Massey, Seth E. Sims

Faculty and Research Publications

The role of Homeobox transcription factors during fin and limb development have been the focus of recent work investigating the evolutionary origin of limb-specific morphologies. Here we characterize the expression of HoxD genes, as well as the cluster-associated genes Evx2 and LNP, in the paddlefish Polyodon spathula, a basal ray-finned fish. Our results demonstrate a collinear pattern of nesting in early fin buds that includes HoxD14, a gene previously thought to be isolated from global Hoxregulation. We also show that in both Polyodon and the catsharkScyliorhinus canicula (a representative chondrichthyan) late phaseHoxD transcripts are present in cells of the fin-fold …


Efn-4 Functions In Lad-2-Mediated Axon Guidance In Caenorhabditis Elegans, Alicia A. Schwieterman, Cory J. Donelson, Jonathan L. Mcmurry, Martin L. Hudson Feb 2016

Efn-4 Functions In Lad-2-Mediated Axon Guidance In Caenorhabditis Elegans, Alicia A. Schwieterman, Cory J. Donelson, Jonathan L. Mcmurry, Martin L. Hudson

Faculty and Research Publications

During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for theC. elegansephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with theC. elegansdivergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to …


Isothermal Titration Calorimetry Uncovers Substrate Promiscuity Of Bicupin Oxalate Oxidase From Ceriporiopsis Subvermispora, Hassan Rana, Patricia Moussatche, Lis Souza Rocha, Ellen W. Moomaw Feb 2016

Isothermal Titration Calorimetry Uncovers Substrate Promiscuity Of Bicupin Oxalate Oxidase From Ceriporiopsis Subvermispora, Hassan Rana, Patricia Moussatche, Lis Souza Rocha, Ellen W. Moomaw

Faculty and Research Publications

Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzymecatalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (CsOxOx), a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx activity involves …


Kcnq1 Rs2237895 Polymorphism Is Associated With Gestational Diabetes In Pakistani Women, Syeda Sadia Fatima, Bushra Chaudhry, Taseer Ahmed Khan, Saad Farooq Jan 2016

Kcnq1 Rs2237895 Polymorphism Is Associated With Gestational Diabetes In Pakistani Women, Syeda Sadia Fatima, Bushra Chaudhry, Taseer Ahmed Khan, Saad Farooq

Department of Biological & Biomedical Sciences

Background and Objective: Genetic studies on gestational diabetes (GDM) are relatively scarce; moreover, limited data is available for KCNQ1 polymorphism in Pakistani pregnant women. We aimed to determine the frequency of KCNQ1 rs2237895 in GDM and normal pregnant controls and its association with GDM-related phenotypes.
Methods: A total of 637 pregnant females (429 controls and 208 cases) in their second trimester were classified according to the International Association of the Diabetes and Pregnancy Study criteria in this study. Their blood samples were genotyped for KCNQ1 SNP rs2237895 using PCR-RFLP method and sequencing. Fasting and two hour-post glucose load blood levels, …


Metabolomics Enables Precision Medicine: “A White Paper, Community Perspective”, Richard D. Beger, Warwick B. Dunn, Michael A. Schmidt, Steven S. Cross, Jennifer A. Kirwan, Marta S. Cascante, Lorraine Brennan, David S. Wishart, Matej Orešič, Thomas Hankemeier, David Broadhurst, Andrew N. Lane, Karsten Suhre, Gabi Kastenmüller, Susan J. Sumner, Ines Thiele, Oliver E. Fiehn, Rima Kaddurah- Daouk Jan 2016

Metabolomics Enables Precision Medicine: “A White Paper, Community Perspective”, Richard D. Beger, Warwick B. Dunn, Michael A. Schmidt, Steven S. Cross, Jennifer A. Kirwan, Marta S. Cascante, Lorraine Brennan, David S. Wishart, Matej Orešič, Thomas Hankemeier, David Broadhurst, Andrew N. Lane, Karsten Suhre, Gabi Kastenmüller, Susan J. Sumner, Ines Thiele, Oliver E. Fiehn, Rima Kaddurah- Daouk

Research outputs 2014 to 2021

Introduction:Background to metabolomics:

Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or “-omics” level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person’s metabolic state provides a close representation of that individual’s overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides …


Mitochondrial Function Assessed By 31p Mrs And Bold Mri In Non-Obese Type 2 Diabetic Rats, Yuchi Liu, Xunbai Mei, Jielei Li, Nicola Lai, Xin Yu Jan 2016

Mitochondrial Function Assessed By 31p Mrs And Bold Mri In Non-Obese Type 2 Diabetic Rats, Yuchi Liu, Xunbai Mei, Jielei Li, Nicola Lai, Xin Yu

Electrical & Computer Engineering Faculty Publications

The study aims to characterize age-associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia-reperfusion in the skeletal muscle of the Goto-Kakizaki (GK) rats, a rat model of non-obese type 2 diabetes (T2D). 31P magnetic resonance spectroscopy (MRS) and blood oxygen level-dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 weeks) GK and Wistar (control) rats. 31P-MRS and BOLD-MRI data were acquired continuously during an ischemia and reperfusion protocol to quantify changes in phosphate metabolites and muscle oxygenation. The time constant of phosphocreatine recovery, an index of mitochondrial oxidative capacity, …