Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Genetics Ignite Focus On Microglial Inflammation In Alzheimer's Disease, Manasi Malik, Ishita Parikh, Jared B. Vasquez, Conor Smith, Leon Tai, Guojun Bu, Mary Jo Ladu, David W. Fardo, G. William Rebeck, Steven Estus Oct 2015

Genetics Ignite Focus On Microglial Inflammation In Alzheimer's Disease, Manasi Malik, Ishita Parikh, Jared B. Vasquez, Conor Smith, Leon Tai, Guojun Bu, Mary Jo Ladu, David W. Fardo, G. William Rebeck, Steven Estus

Physiology Faculty Publications

In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer's disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how …


Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr. May 2015

Pathological Effects Of Repeated Concussive Tbi In Mouse Models: Periventricular Damage And Ventriculomegaly, Richard H. Wolferz Jr.

Honors Scholar Theses

Repeated concussive traumatic brain injury (rcTBI) is the most prominent form of head injury affecting the brain, with an estimated 1.7 million Americans affected each year (Kuhn 2012). Neurologists have been concerned about the danger of repeated head impacts since the 1920’s, but researchers have only begun to understand the long-term effects of rcTBI (McKee 2009). Although symptoms can be as mild as dizziness, current research suggests that multiple concussions can lead to a progressive degenerative brain disease known as chronic traumatic encephalopathy (CTE) (Luo 2008, McKee 2009, Kane 2013). Research on the brain is just beginning to scratch the …


Determining The Role Of Il-4 Induced Neuroinflammation In Microglial Activity And Amyloid-Ss Using Bv2 Microglial Cells And App/Ps1 Transgenic Mice, Clare H. Latta, Tiffany L. Sudduth, Erica M. Weekman, Holly M. Brothers, Erin L. Abner, Gabriel J. Popa, Michael D. Mendenhall, Floracita Gonzalez-Oregon, Kaitlyn Braun, Donna M. Wilcock Mar 2015

Determining The Role Of Il-4 Induced Neuroinflammation In Microglial Activity And Amyloid-Ss Using Bv2 Microglial Cells And App/Ps1 Transgenic Mice, Clare H. Latta, Tiffany L. Sudduth, Erica M. Weekman, Holly M. Brothers, Erin L. Abner, Gabriel J. Popa, Michael D. Mendenhall, Floracita Gonzalez-Oregon, Kaitlyn Braun, Donna M. Wilcock

Physiology Faculty Publications

Background

Microglia are considered the resident immune cells of the central nervous system (CNS). In response to harmful stimuli, an inflammatory reaction ensues in which microglia are activated in a sequenced spectrum of pro- and antiinflammatory phenotypes that are akin to the well-characterized polarization states of peripheral macrophages. A “classically” activated M1 phenotype is known to eradicate toxicity. The transition to an “alternatively” activated M2 phenotype encompasses neuroprotection and repair. In recent years, inflammation has been considered an accompanying pathology in response to the accumulation of extracellular amyloid-β (Aβ) in Alzheimer’s disease (AD). This study aimed to drive an M2a-biased …