Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physiology

Exercise Training Prevents The Perivascular Adipose Tissue-Induced Aortic Dysfunction With Metabolic Syndrome, Evan Devallance, Kayla W. Branyan, Kent C. Lemaster, Ray Anderson, Kent L. Marshall, I. Mark Olfert, David M. Smith, Eric E. Kelly, Randy W. Bryner, Jefferson C. Frisbee, Paul D. Chantler Jan 2019

Exercise Training Prevents The Perivascular Adipose Tissue-Induced Aortic Dysfunction With Metabolic Syndrome, Evan Devallance, Kayla W. Branyan, Kent C. Lemaster, Ray Anderson, Kent L. Marshall, I. Mark Olfert, David M. Smith, Eric E. Kelly, Randy W. Bryner, Jefferson C. Frisbee, Paul D. Chantler

Faculty & Staff Scholarship

The aim of the study was to determine the effects of exercise training on improving the thoracic perivascularadipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syn-drome and its subsequent actions on aortic function.Methods:Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks ofcontrol conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the inter-vention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a forcetransducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene …


Machine-Learning To Stratify Diabetic Patients Using Novel Cardiac Biomarkers And Integrative Genomics, Quincy A. Hathaway, Skyler M. Roth, Mark V. Pinti, Daniel C. Sprando, Amina Kunovac, Andrya J. Durr, Chris C. Cook, Garret K. Fink, Tristen B. Cheuvront, Jasmine H. Grossman, Ghadah A. Aljahli, Andrew D. Taylor, Andrew P. Giromini, Jessica L. Allen, John M. Hollander Jan 2019

Machine-Learning To Stratify Diabetic Patients Using Novel Cardiac Biomarkers And Integrative Genomics, Quincy A. Hathaway, Skyler M. Roth, Mark V. Pinti, Daniel C. Sprando, Amina Kunovac, Andrya J. Durr, Chris C. Cook, Garret K. Fink, Tristen B. Cheuvront, Jasmine H. Grossman, Ghadah A. Aljahli, Andrew D. Taylor, Andrew P. Giromini, Jessica L. Allen, John M. Hollander

Faculty & Staff Scholarship

Background: Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. Methods: Right atrial appendages from 50 patients, 30 non-diabetic and 20 …


Activation Of Adenosine A2a But Not A2b Receptors Is Involved In Uridine Adenosine Tetraphosphate-Induced Porcine Coronary Smooth Muscle Relaxation, Changyan Sun, Tong Jiao, Daphne Merkus, Dirk J. Duncker, S. Jamal Mustafa, Zhichao Zhou Jan 2019

Activation Of Adenosine A2a But Not A2b Receptors Is Involved In Uridine Adenosine Tetraphosphate-Induced Porcine Coronary Smooth Muscle Relaxation, Changyan Sun, Tong Jiao, Daphne Merkus, Dirk J. Duncker, S. Jamal Mustafa, Zhichao Zhou

Faculty & Staff Scholarship

Activation of both adenosine A2A and A2B receptors (A2BR) contributes to coronary vasodilation. We previously demonstrated that uridine adenosine tetraphosphate (Up4A) is a novel vasodilator in the porcine coronary microcirculation, acting mainly on A2AR in smooth muscle cells (SMC). We further investigated whether activation of A2BR is involved in Up4A-mediated coronary SMC relaxation. Both A2AR and A2BR may stimulate H2O2 production leading to activation of KATP channels in SMCs, we also studied the involvement of H2O2 and KATP channels in Up4A-mediated effect. Coronary small arteries dissected from the apex of porcine hearts were mounted on wire myograph for Up4A concentration …


Reduction Of Endothelial Nitric Oxide Increases The Adhesiveness Of Constitutive Endothelial Membrane Icam-1 Through Src-Mediated Phosphorylation, Feng Gao, Brandon P. Lucke-Wold, Xiang Li, Aric F. Logsdon, Li-Chong Xu, Sulei Xu, Kyle B. Lapenna, Huaqi Wang, M.A. Hassan Talukder, Christopher A. Siedlecki, Jason D. Huber, Charles L. Rosen, Pingnian He Jan 2018

Reduction Of Endothelial Nitric Oxide Increases The Adhesiveness Of Constitutive Endothelial Membrane Icam-1 Through Src-Mediated Phosphorylation, Feng Gao, Brandon P. Lucke-Wold, Xiang Li, Aric F. Logsdon, Li-Chong Xu, Sulei Xu, Kyle B. Lapenna, Huaqi Wang, M.A. Hassan Talukder, Christopher A. Siedlecki, Jason D. Huber, Charles L. Rosen, Pingnian He

Faculty & Staff Scholarship

Nitric oxide (NO) is a known anti-adhesive molecule that prevents platelet aggregation and leukocyte adhesion to endothelial cells (ECs). The mechanism has been attributed to its role in the regulation of adhesion molecules on leukocytes and the adhesive properties of platelets. Our previous study conducted in rat venules found that reduction of EC basal NO synthesis caused EC ICAM-1-mediated firm adhesion of leukocytes within 10–30min. This quick response occurred in the absence of alterations of adhesion molecules on leukocytes and also opposes the classical pattern of ICAM-1-mediated leukocyte adhesion that requires protein synthesis and occurs hours after stimulation. The objective …


Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill Jan 2018

Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill

Faculty & Staff Scholarship

DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz Jan 2018

Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz

Faculty & Staff Scholarship

Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. …


Absolute Lymphocyte And Neutrophil Counts In Neonatal Ischemic Brain Injury, Jessica M. Povroznik, Elizabeth B. Engler-Chiurazzi, Tania Nanavati, Paola Pergami Jan 2018

Absolute Lymphocyte And Neutrophil Counts In Neonatal Ischemic Brain Injury, Jessica M. Povroznik, Elizabeth B. Engler-Chiurazzi, Tania Nanavati, Paola Pergami

Faculty & Staff Scholarship

Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n=12), acute ischemic stroke (n=15), and transient tachypnea of the newborn (n=48) was conducted; transient tachypnea of …