Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

FIU Electronic Theses and Dissertations

Articles 1 - 13 of 13

Full-Text Articles in Physiology

Energetic Cost And Physiological Trade-Offs, Heba A. Ali Nov 2021

Energetic Cost And Physiological Trade-Offs, Heba A. Ali

FIU Electronic Theses and Dissertations

Understanding how organisms allocate limited resources across physiological systems is a major challenge in biology. This study revealed that high energetic demand of electric signals of male electric fish (Brachyhypopomus gauderio) is matched by a metabolic trade-off with other cellular functions. We used thyroxine (T4) to modulate the fish’s signal metabolism, partitioned the energy budget pharmacologically, and measured energy consumption using oxygen respirometry. In males, total energy consumption was unchanged pre- and post-T4 treatment, while signal metabolism rose and the standard metabolic rate fell in an even trade-off. Total metabolism in females did the opposite. Under T4, the …


Functional Strategies Of Tree Fine-Roots In Relation To The Soil Environment And Microbiome: Variaiton In Root Morphology, Tissue Chemistry And Physiology, James Aaron Hogan Nov 2021

Functional Strategies Of Tree Fine-Roots In Relation To The Soil Environment And Microbiome: Variaiton In Root Morphology, Tissue Chemistry And Physiology, James Aaron Hogan

FIU Electronic Theses and Dissertations

Tree root systems have evolved multidimensional functioning, specializing in water and nutrient acquisition via different strategies. Root functional strategies vary among tree species and are adapted to the abiotic and biotic soil environment. This dissertation explores how three facets of root system functional strategies – morphology and chemistry, biotic associations with fungi, and respiration rates – vary within and among tree species along environmental gradients. Chapter one examines how root system morphology varies with forest succession and soil environment in a tropical forest of Hainan, China, finding that root systems had larger diameters and fewer root tips in the younger …


High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon Jun 2021

High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon

FIU Electronic Theses and Dissertations

The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. I investigated biochemical differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and the content of reduced thiols of the proteome. By characterizing the xanthophyll content of the two strains I was able to determine that KbLT performs qE inconsistently. To investigate the …


Functional Regionalization In The Fly Eye As An Adaptation To Habitat Structure, Carlos A. Ruiz Mar 2021

Functional Regionalization In The Fly Eye As An Adaptation To Habitat Structure, Carlos A. Ruiz

FIU Electronic Theses and Dissertations

With over 150,000 described species, flies constitute one of the most species-rich groups of animals on earth, and have managed to colonize almost every corner of it. Part of their success comes from their amazing flying skills, which are strongly tied to their visual capabilities. To navigate fast and accurately through their habitats, they must be able to process the inordinate amounts of visual information necessary to sort obstacles, avoid predators and remain on course. Surprisingly, despite their tiny brains, flies have no problem in processing all that information to generate correcting maneuvers in just about 30 ms. To this …


The Metabolic Ecology Of Tropical Amphibians Across An Elevational Gradient In The Andes Of Southeastern Peru, Michael R. Britton Feb 2020

The Metabolic Ecology Of Tropical Amphibians Across An Elevational Gradient In The Andes Of Southeastern Peru, Michael R. Britton

FIU Electronic Theses and Dissertations

Metabolism is a fundamental biological process that determines the rate at which organisms process energy and materials, and determines the availability of resources for growth, maintenance and reproduction. Metabolic rates scale across levels of organization from cells to whole organisms and affect population, community, and ecosystem processes. Anthropogenic climate change and other environmental changes are predicted to have major impacts on the energetics of organisms that will be mediated through metabolic physiology. Tropical ectotherms, such as amphibians, may be among the most vulnerable to metabolic impacts of climate change as a result of being ectothermic, having high thermal sensitivity, and …


Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow Jun 2019

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow

FIU Electronic Theses and Dissertations

Reef ecosystems are composed of a variety of organisms, transient species of fish and invertebrates, microscopic bacteria and viruses, and structural organisms that build the living foundation, coral. Sessile cnidarians, corals and anemones, interpret dynamic environments of organisms and abiotic factors through a molecular interface. Recognition of foreign molecules occurs through innate immunity via receptors identifying conserved molecular patterns. Similarly, chemosensory receptors monitor the environment through specific ligands. Chemosensory receptors include ionotropic glutamate receptors (iGluRs), transmembrane ion channels involved in chemical sensing and neural signal transduction. Recently, an iGluR homolog was implicated in cnidarian immunological resistance to recurrent infections of …


Regulation Of Juvenile Hormone Synthesis By 20-Hydroxyecdysone In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza May 2018

Regulation Of Juvenile Hormone Synthesis By 20-Hydroxyecdysone In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza

FIU Electronic Theses and Dissertations

In Aedes aegypti, development and reproduction are regulated by juvenile hormone III (JH). This master regulatory hormone is synthesized by the corpora allata (CA), a pair of endocrine glands with neural connections to the brain. JH titers are largely determined by the rate of biosynthetic activity of the CA and are regulated by inhibitory and stimulatory factors. Like JH, the ecdysteroid 20-hydroxyecdysone (20E) is a key hormonal regulator and has been proposed as an allatoregulator in other insects. However, its part in the regulation of JH biosynthesis of mosquitoes was unknown. The specific aims of this dissertation were to …


Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke Nov 2016

Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative, metabolically versatile, opportunistic pathogen that exhibits a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability is in part mediated by two-component systems (TCS) that play a crucial role in regulating virulence mechanisms, metabolism and antibiotic resistance. Our sequence analysis of the P. aeruginosa PAO1 genome revealed the presence of two open reading frames, mifS and mifR, which encodes putative TCS proteins, a histidine sensor kinase MifS and a response regulator MifR, respectively. This two-gene operon was found immediately upstream of the poxAB operon, where poxB encodes …


The Individual And Interactive Effects Of Nitrogen And Phosphorus Enrichment On Coral Reefs, Andrew A. Shantz Mar 2016

The Individual And Interactive Effects Of Nitrogen And Phosphorus Enrichment On Coral Reefs, Andrew A. Shantz

FIU Electronic Theses and Dissertations

Human domination of global nutrient cycles is profoundly altering our planet. Yet on coral reefs, the effects of changing nutrient regimes have likely been over-simplified. This dissertation investigates the complexity of animal-nutrient interactions at the organismal level and explores how the outcomes of these interactions cascade through levels of biological organization. To do so, I examined the effects of nitrogen (N) and phosphorus (P) on corals and macroalgae, and how these effects in turn influenced reef communities and entire ecosystems. I show that P consistently increases coral growth rates while N has variable, often negative, effects on coral growth. The …


Theoretical Investigation Of Intra- And Inter-Cellular Spatiotemporal Calcium Patterns In Microcirculation, Jaimit B. Parikh Jan 2015

Theoretical Investigation Of Intra- And Inter-Cellular Spatiotemporal Calcium Patterns In Microcirculation, Jaimit B. Parikh

FIU Electronic Theses and Dissertations

Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC …


Ecdysis Triggering Hormone And Its Role In Juvenile Hormone Synthesis In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza Jan 2014

Ecdysis Triggering Hormone And Its Role In Juvenile Hormone Synthesis In The Yellow-Fever Mosquito, Aedes Aegypti, Maria Areiza

FIU Electronic Theses and Dissertations

Ecdysis triggering hormone (ETH) is a neuropeptide known for its role in the orchestration of ecdysis. However, its role in the regulation of Juvenile Hormone (JH) synthesis is unknown. In Aedes aegypti, JH is synthesized by the corpora allata (CA) and titers are tightly regulated by allatoregulatory factors. In this study I describe the effect of ETH on JH synthesis during the late pupal stage and in the adult female after blood feeding. Analysis of ETH receptor (ETHRs) expression showed that ETHRs are present in both the CA and the corpora cardiaca (CC), a neurohemal organ. The data suggest …


Acclimatization Of The Tropical Reef Coral Acropora Millepora To Hyperthermal Stress, Anthony John Bellantuono Sep 2013

Acclimatization Of The Tropical Reef Coral Acropora Millepora To Hyperthermal Stress, Anthony John Bellantuono

FIU Electronic Theses and Dissertations

The demise of reef-building corals potentially lies on the horizon, given ongoing climate change amid other anthropogenic environmental stressors. If corals cannot acclimatize or adapt to changing conditions, dramatic declines in the extent and health of the living reefs are expected within the next half century. The primary and proximal global threat to corals is climate change. Reef-building corals are dependent upon a nutritional symbiosis with photosynthetic dinoflagellates belonging to the group Symbiodinium. The symbiosis between the cnidarian host and algal partner is a stress-sensitive relationship; temperatures just 1°C above normal thermal maxima can result in the breakdown of …


The Effect Of Male-Male Competition And Its Underlying Regulatory Mechanisms On The Electric Signal Of The Gymnotiform Fish Brachyhypopomus Gauderio, Vielka Lineth Salazar Oct 2009

The Effect Of Male-Male Competition And Its Underlying Regulatory Mechanisms On The Electric Signal Of The Gymnotiform Fish Brachyhypopomus Gauderio, Vielka Lineth Salazar

FIU Electronic Theses and Dissertations

Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced …