Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Associative Learning Contributes To The Increased Water Intake Observed After Daily Injections Of Angiotensin Ii, Maggie Postolache, Jessica Santollo, Derek Daniels Oct 2017

Associative Learning Contributes To The Increased Water Intake Observed After Daily Injections Of Angiotensin Ii, Maggie Postolache, Jessica Santollo, Derek Daniels

Biology Faculty Publications

Daily injections of angiotensin II (AngII) cause a progressive increase of water intake that resembles a classically ascribed non-associative sensitization. Consistent with the presumption that the observed increase in intake was sensitization, we hypothesized that it resulted from a pharmacological interaction between AngII and its receptor. To test this hypothesis, and remove the influence of drinking itself, we implemented a delay in water access after injection of AngII (icv) on four consecutive ‘induction days,’ and then measured intake on the next day (‘test day’) when rats were allowed to drink immediately after AngII. The delay in water access effectively reduced …


Macrophages Are Necessary For Epimorphic Regeneration In African Spiny Mice, Jennifer Simkin, Thomas R. Gawriluk, John C. Gensel, Ashley W. Seifert May 2017

Macrophages Are Necessary For Epimorphic Regeneration In African Spiny Mice, Jennifer Simkin, Thomas R. Gawriluk, John C. Gensel, Ashley W. Seifert

Biology Faculty Publications

How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate …


High-Fat Feeding Does Not Disrupt Daily Rhythms In Female Mice Because Of Protection By Ovarian Hormones, Brian T. Palmisano, John M. Stafford, Julie S. Pendergast Mar 2017

High-Fat Feeding Does Not Disrupt Daily Rhythms In Female Mice Because Of Protection By Ovarian Hormones, Brian T. Palmisano, John M. Stafford, Julie S. Pendergast

Biology Faculty Publications

Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured …