Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Thomas Jefferson University

Discipline
Keyword
Publication Year
Publication

Articles 1 - 8 of 8

Full-Text Articles in Physiology

Editorial: Pharmacology Of Endocrine Related Gpcrs, Francesco De Pascali, Aylin Hanyaloglu, Frederic Jean-Alphonse, Francesco Potì, Eric Reiter Feb 2024

Editorial: Pharmacology Of Endocrine Related Gpcrs, Francesco De Pascali, Aylin Hanyaloglu, Frederic Jean-Alphonse, Francesco Potì, Eric Reiter

Department of Biochemistry and Molecular Biology Faculty Papers

No abstract provided.


Enteroendocrine Cell Regulation Of The Gut-Brain Axis, Joshua Barton, Annie Londregan, Tyler Alexander, Ariana Entezari, Manuel Covarrubias, Scott Waldman Nov 2023

Enteroendocrine Cell Regulation Of The Gut-Brain Axis, Joshua Barton, Annie Londregan, Tyler Alexander, Ariana Entezari, Manuel Covarrubias, Scott Waldman

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into …


Global Impact Of Proteoglycan Science On Human Diseases, Christopher Xie, Liliana Schaefer, Renato V. Iozzo Oct 2023

Global Impact Of Proteoglycan Science On Human Diseases, Christopher Xie, Liliana Schaefer, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss …


Adrenergic Signaling Regulates Mitochondrial Ca(2+) Uptake Through Pyk2-Dependent Tyrosine Phosphorylation Of The Mitochondrial Ca(2+) Uniporter., Jin O-Uchi, Bong Sook Jhun, Shangcheng Xu, Stephen Hurst, Anna Raffaello, Xiaoyun Liu, Bing Yi, Huiliang Zhang, Polina Gross, Jyotsna Mishra, Alina Ainbinder, Sarah Kettlewell, Godfrey L Smith, Robert T Dirksen, Wang Wang, Rosario Rizzuto, Shey-Shing Sheu May 2014

Adrenergic Signaling Regulates Mitochondrial Ca(2+) Uptake Through Pyk2-Dependent Tyrosine Phosphorylation Of The Mitochondrial Ca(2+) Uniporter., Jin O-Uchi, Bong Sook Jhun, Shangcheng Xu, Stephen Hurst, Anna Raffaello, Xiaoyun Liu, Bing Yi, Huiliang Zhang, Polina Gross, Jyotsna Mishra, Alina Ainbinder, Sarah Kettlewell, Godfrey L Smith, Robert T Dirksen, Wang Wang, Rosario Rizzuto, Shey-Shing Sheu

Center for Translational Medicine Faculty Papers

Abstract Aims: Mitochondrial Ca(2+) homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca(2+) regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca(2+) entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. Results: α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich …


Nuclear Localization Of Cpi-17, A Protein Phosphatase-1 Inhibitor Protein, Affects Histone H3 Phosphorylation And Corresponds To Proliferation Of Cancer And Smooth Muscle Cells., Masumi Eto, Jason A Kirkbride, Rishika Chugh, Nana Kofi Karikari, Jee In Kim Apr 2013

Nuclear Localization Of Cpi-17, A Protein Phosphatase-1 Inhibitor Protein, Affects Histone H3 Phosphorylation And Corresponds To Proliferation Of Cancer And Smooth Muscle Cells., Masumi Eto, Jason A Kirkbride, Rishika Chugh, Nana Kofi Karikari, Jee In Kim

Department of Molecular Physiology and Biophysics Faculty Papers

CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear …


Endogenous Inhibitor Proteins That Connect Ser/Thr Kinases And Phosphatases In Cell Signaling., Masumi Eto, David L Brautigan Sep 2012

Endogenous Inhibitor Proteins That Connect Ser/Thr Kinases And Phosphatases In Cell Signaling., Masumi Eto, David L Brautigan

Department of Molecular Physiology and Biophysics Faculty Papers

Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting …


Mechanism Of Catch Force: Tethering Of Thick And Thin Filaments By Twitchin., Thomas M Butler, Marion J Siegman Jan 2010

Mechanism Of Catch Force: Tethering Of Thick And Thin Filaments By Twitchin., Thomas M Butler, Marion J Siegman

Department of Molecular Physiology and Biophysics Faculty Papers

Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini of the minititin twitchin (approximately 526 kDa). Some catch force maintenance car also occur together with cycling myosin crossbridges at submaximal calcium concentrations, but not when the muscle is maximally activated. Additionally, the link responsible for catch can adjust during shortening of …


Y27632, A Rho-Activated Kinase Inhibitor, Normalizes Dysregulation In Alpha1-Adrenergic Receptor-Induced Contraction Of Lyon Hypertensive Rat Artery Smooth Muscle., Maria Regina Freitas, Masumi Eto, Jason A Kirkbride, Christa Schott, Jean Sassard, Jean-Claude Stoclet Mar 2009

Y27632, A Rho-Activated Kinase Inhibitor, Normalizes Dysregulation In Alpha1-Adrenergic Receptor-Induced Contraction Of Lyon Hypertensive Rat Artery Smooth Muscle., Maria Regina Freitas, Masumi Eto, Jason A Kirkbride, Christa Schott, Jean Sassard, Jean-Claude Stoclet

Department of Molecular Physiology and Biophysics Faculty Papers

RhoA-activated kinase (ROK) is involved in the disorders of smooth muscle contraction found in hypertension model animals and patients. We examined whether the alpha1-adrenergic receptor agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA and aorta were isolated from LH and Lyon normotensive (LN) rats. After Ca(2+)-depletion and pre-treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of CaCl(2). In LH SMA Ca(2+) permeated cells to a lesser extent as compared with LN SMA, while CaCl(2)-induced contraction of LH …