Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physiology

Editorial: Recent Advances In Cardiotoxicity Testing, Tamer M. A. Mohamed, Javid Moslehi, Jonathan Satin Nov 2021

Editorial: Recent Advances In Cardiotoxicity Testing, Tamer M. A. Mohamed, Javid Moslehi, Jonathan Satin

Physiology Faculty Publications

No abstract provided.


Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle Jun 2021

Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle

Physiology Faculty Publications

Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a+/ΔKPQ). Electrocardiographic telemetry showed inducing the …


Effect Of Muscle Length On Cross-Bridge Kinetics In Intact Cardiac Trabeculae At Body Temperature, Nima Milani-Nejad, Ying Xu, Jonathan P. Davis, Kenneth S. Campbell, Paul M. L. Janssen Dec 2012

Effect Of Muscle Length On Cross-Bridge Kinetics In Intact Cardiac Trabeculae At Body Temperature, Nima Milani-Nejad, Ying Xu, Jonathan P. Davis, Kenneth S. Campbell, Paul M. L. Janssen

Physiology Faculty Publications

Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends …


Age-Associated Disruption Of Molecular Clock Expression In Skeletal Muscle Of The Spontaneously Hypertensive Rat, Mitsunori Miyazaki, Elizabeth Schroder, Stephanie E. Edelmann, Michael E. Hughes, Karl Kornacker, C. William Balke, Karyn A. Esser Nov 2011

Age-Associated Disruption Of Molecular Clock Expression In Skeletal Muscle Of The Spontaneously Hypertensive Rat, Mitsunori Miyazaki, Elizabeth Schroder, Stephanie E. Edelmann, Michael E. Hughes, Karl Kornacker, C. William Balke, Karyn A. Esser

Physiology Faculty Publications

It is well known that spontaneously hypertensive rats (SHR) develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007) linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure) compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including …


Distorting The Sarcomere, Kenneth S. Campbell Jul 2010

Distorting The Sarcomere, Kenneth S. Campbell

Physiology Faculty Publications

No abstract provided.