Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology Faculty Publications

2016

Female

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Protease-Activated Receptor 4 Induces Bladder Pain Through High Mobility Group Box-1, Dimitrios E. Kouzoukas, Fei Ma, Katherine L. Meyer-Siegler, Karin N. Westlund, David E. Hunt, Pedro L. Vera Mar 2016

Protease-Activated Receptor 4 Induces Bladder Pain Through High Mobility Group Box-1, Dimitrios E. Kouzoukas, Fei Ma, Katherine L. Meyer-Siegler, Karin N. Westlund, David E. Hunt, Pedro L. Vera

Physiology Faculty Publications

Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to …


Myonuclear Transcription Is Responsive To Mechanical Load And Dna Content But Uncoupled From Cell Size During Hypertrophy, Tyler J. Kirby, Rooshil M. Patel, Timothy S. Mcclintock, Esther E. Dupont-Versteegden, Charlotte A. Peterson, John J. Mccarthy Mar 2016

Myonuclear Transcription Is Responsive To Mechanical Load And Dna Content But Uncoupled From Cell Size During Hypertrophy, Tyler J. Kirby, Rooshil M. Patel, Timothy S. Mcclintock, Esther E. Dupont-Versteegden, Charlotte A. Peterson, John J. Mccarthy

Physiology Faculty Publications

Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number …