Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Intravesical Cd74 And Cxcr4, Macrophage Migration Inhibitory Factor (Mif) Receptors, Mediate Bladder Pain, Shaojing Ye, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala, Pedro L. Vera Aug 2021

Intravesical Cd74 And Cxcr4, Macrophage Migration Inhibitory Factor (Mif) Receptors, Mediate Bladder Pain, Shaojing Ye, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala, Pedro L. Vera

Physiology Faculty Publications

BACKGROUND: Activation of intravesical protease activated receptor 4 (PAR4) leads to release of urothelial macrophage migration inhibitory factor (MIF). MIF then binds to urothelial MIF receptors to release urothelial high mobility group box-1 (HMGB1) and elicit bladder hyperalgesia. Since MIF binds to multiple receptors, we investigated the contribution of individual urothelial MIF receptors to PAR4-induced HMGB1 release in vivo and in vitro and bladder pain in vivo.

METHODOLOGY/PRINCIPAL FINDINGS: We tested the effect of intravesical pre-treatment with individual MIF or MIF receptor (CD74, CXCR4, CXCR2) antagonists on PAR4-induced HMGB1 release in vivo (female C57/BL6 mice) and in vitro (primary …


The Effects Of Myelin On Macrophage Activation Are Phenotypic Specific Via Cpla2 In The Context Of Spinal Cord Injury Inflammation, Timothy J. Kopper, Bei Zhang, William M. Bailey, Kara E. Bethel, John C. Gensel Mar 2021

The Effects Of Myelin On Macrophage Activation Are Phenotypic Specific Via Cpla2 In The Context Of Spinal Cord Injury Inflammation, Timothy J. Kopper, Bei Zhang, William M. Bailey, Kara E. Bethel, John C. Gensel

Physiology Faculty Publications

Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin …