Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology Faculty Publications

Series

2011

Nerve Net

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Functional Plasticity Of Central Trpv1 Receptors In Brainstem Dorsal Vagal Complex Circuits Of Streptozotocin-Treated Hyperglycemic Mice, Andrea Zsombok, Muthu D. Bhaskaran, Hong Gao, Andrei V. Derbenev, Bret N. Smith Sep 2011

Functional Plasticity Of Central Trpv1 Receptors In Brainstem Dorsal Vagal Complex Circuits Of Streptozotocin-Treated Hyperglycemic Mice, Andrea Zsombok, Muthu D. Bhaskaran, Hong Gao, Andrei V. Derbenev, Bret N. Smith

Physiology Faculty Publications

Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication …


Synaptic Reorganization Of Inhibitory Hilar Interneuron Circuitry After Traumatic Brain Injury In Mice, Robert F. Hunt, Stephen W. Scheff, Bret N. Smith May 2011

Synaptic Reorganization Of Inhibitory Hilar Interneuron Circuitry After Traumatic Brain Injury In Mice, Robert F. Hunt, Stephen W. Scheff, Bret N. Smith

Physiology Faculty Publications

Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found …