Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physiology

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap Dec 2015

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


Following Temperature Stress, Export Of Heat Shock Mrna Occurs Efficiently In Cells With Mutations In Genes Normally Important For Mrna Export, Christiane Rollenhagen, Christine A. Hodge, Charles N. Cole Jan 2007

Following Temperature Stress, Export Of Heat Shock Mrna Occurs Efficiently In Cells With Mutations In Genes Normally Important For Mrna Export, Christiane Rollenhagen, Christine A. Hodge, Charles N. Cole

Dartmouth Scholarship

Heat shock leads to accumulation of polyadenylated RNA in nuclei of Saccharomyces cerevisiae cells, transcriptional induction of heat shock genes, and efficient export of polyadenylated heat shock mRNAs. These studies were conducted to examine the requirements for export of mRNA following heat shock. We used in situ hybridization to detect SSA4 mRNA (encoding Hsp70) and flow cytometry to measure the amount of Ssa4p-green fluorescent protein (GFP) produced following heat shock. Npl3p and Yra1p are mRNA-binding proteins recruited to nascent mRNAs and are essential for proper mRNA biogenesis and export. Heat shock mRNA was exported efficiently in temperature-sensitive npl3, yra1 …