Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physiology

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber Jul 2006

A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber

Dartmouth Scholarship

The plant hormone cytokinin regulates numerous growth and developmental processes. A signal transduction pathway for cytokinin has been elucidated that is similar to bacterial two-component phosphorelays. In Arabidopsis, this pathway is comprised of receptors that are similar to sensor histidine kinases, histidine-containing phosphotransfer proteins, and response regulators (ARRs). There are two classes of response regulators, the type-A ARRs, which act as negative regulators of cytokinin responses, and the type-B ARRs, which are transcription factors that play a positive role in mediating cytokinin-regulated gene expression. Here we show that several closely related members of the Arabidopsis AP2 gene family of …


The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt Aug 2004

The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt

Dartmouth Scholarship

The Caenorhabditis elegans F-box protein SEL-10 and its human homolog have been proposed to regulate LIN-12 Notch signaling by targeting for ubiquitin-mediated proteasomal degradation LIN-12 Notch proteins and SEL-12 PS1 presenilins, the latter of which have been implicated in Alzheimer's disease. We found that sel-10 is the same gene as egl-41, which previously had been defined by gain-of-function mutations that semidominantly cause masculinization of the hermaphrodite soma. Our results demonstrate that mutations causing loss-of-function of sel-10 also have masculinizing activity, indicating that sel-10 functions to promote female development. Genetically, sel-10 acts upstream of the genes fem-1, fem-2, and fem-3 and …


A Pdz-Interacting Domain In Cftr Is An Apical Membrane Polarization Signal, Bryan D. Moyer, Jerod Denton, Katherine H. Karlson, Donna Reynolds, Shusheng Wang, John E. Mickle, Michael Milewski, Garry R. Cutting, William B. Guggino, Min Li, Bruce A. Stanton Nov 1999

A Pdz-Interacting Domain In Cftr Is An Apical Membrane Polarization Signal, Bryan D. Moyer, Jerod Denton, Katherine H. Karlson, Donna Reynolds, Shusheng Wang, John E. Mickle, Michael Milewski, Garry R. Cutting, William B. Guggino, Min Li, Bruce A. Stanton

Dartmouth Scholarship

Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 …