Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physiology

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek Sep 2014

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation …


Primate Energy Eexpenditure And Life History, Herman Pontzer, David A. Raichlen, Adam D. Gordon, Kara K. Schroepfer-Walker, Brian Hare, Matthew C. O’Neill, Kathleen M. Muldoon Jan 2014

Primate Energy Eexpenditure And Life History, Herman Pontzer, David A. Raichlen, Adam D. Gordon, Kara K. Schroepfer-Walker, Brian Hare, Matthew C. O’Neill, Kathleen M. Muldoon

Dartmouth Scholarship

Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates’ slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates’ slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that …


Colour And Odour Drive Fruit Selection And Seed Dispersal By Mouse Lemurs, Kim Valenta, Ryan J. Burke, Sarah A. Styler, Derek A. Jackson, Amanda D. Melin, Shawn M. Lehman Aug 2013

Colour And Odour Drive Fruit Selection And Seed Dispersal By Mouse Lemurs, Kim Valenta, Ryan J. Burke, Sarah A. Styler, Derek A. Jackson, Amanda D. Melin, Shawn M. Lehman

Dartmouth Scholarship

Animals and fruiting plants are involved in a complex set of interactions, with animals relying on fruiting trees as food resources, and fruiting trees relying on animals for seed dispersal. This interdependence shapes fruit signals such as colour and odour, to increase fruit detectability, and animal sensory systems, such as colour vision and olfaction to facilitate food identification and selection. Despite the ecological and evolutionary importance of plant-animal interactions for shaping animal sensory adaptations and plant characteristics, the details of the relationship are poorly understood. Here we examine the role of fruit chromaticity, luminance and odour on seed dispersal by …


A Novel Method For Comparative Analysis Of Retinal Specialization Traits From Topographic Maps, Bret A. Moore, Jason M. Kamilar, Shaun P. Collin, Olaf R. P. Bininda-Emonds, Nathaniel J. Dominy, Margaret I. Hall, Christopher P. Hessy, Sonke Johnsen, Thomas J. Lisney, Ellis R. Loew, Gillian Moritz Nov 2012

A Novel Method For Comparative Analysis Of Retinal Specialization Traits From Topographic Maps, Bret A. Moore, Jason M. Kamilar, Shaun P. Collin, Olaf R. P. Bininda-Emonds, Nathaniel J. Dominy, Margaret I. Hall, Christopher P. Hessy, Sonke Johnsen, Thomas J. Lisney, Ellis R. Loew, Gillian Moritz

Dartmouth Scholarship

Abstract Vertebrates possess different types of retinal specializations that vary in number, size, shape, and position in the retina. This diversity in retinal configuration has been revealed through topographic maps, which show variations in neuron density across the retina. Although topographic maps of about 300 vertebrates are available, there is no method for characterizing retinal traits quantitatively. Our goal is to present a novel method to standardize information on the position of the retinal specializations and changes in retinal ganglion cell (RGC) density across the retina from published topographic maps. We measured the position of the retinal specialization using two …


Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor Jan 2012

Minimum Cost Of Transport In Asian Elephants: Do We Really Need A Bigger Elephant?, V. A. Langman, M. F. Rowe, T. J. Roberts, N. V. Langman, C. R. Taylor

Dartmouth Scholarship

Body mass is the primary determinant of an animal’s energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COTmin) decreases with increasing body size roughly as COTmin∝body mass (Mb)–0.316±0.023 (95% CI). Typically, the variation of COTmin with body mass is weaker at the intraspecific level as a result of physiological and geometric similarity within closely related species. The interspecific relationship estimates that …


A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck Nov 2009

A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck

Dartmouth Scholarship

Spatial and non-spatial sensory information is hypothesized to be evaluated in parallel pathways. In this study, we tested the spatial and non-spatial sensitivity of auditory neurons in the ventrolateral prefrontal cortex (vPFC), a cortical area in the non-spatial pathway. Activity was tested while non-human primates reported changes in an auditory stimulus' spatial or non-spatial features. We found that vPFC neurons were reliably modulated during a non-spatial auditory task but were not modulated during a spatial auditory task. The degree of modulation during the non-spatial task correlated positively with the monkeys' behavioral performance. These results are consistent with the hypotheses that …


Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek Aug 2009

Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek

Dartmouth Scholarship

Survival and reproductive success are determined by the complex interplay between behavior, physiology, morphology, and performance. When optimal trait combinations along these various phenotypic axes differ between sexes or across seasons, regulatory mechanisms such as sex steroids can often facilitate sex‐specific and/or seasonal trait expression. In this study, we used surgical castration and replacement of exogenous testosterone in adult male brown anoles (Anolis sagrei) to simultaneously examine the effects of testosterone on a suite of morphological (dewlap area, body size), physiological (immune function), behavioral (dewlap, head bob, and push‐up displays), and performance (stamina, sprint speed, bite force) traits. …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


Parasites Alter Community Structure, Chelsea L. Wood, James E. Byers, Kathryn L. Cottingham, Irit Altman May 2007

Parasites Alter Community Structure, Chelsea L. Wood, James E. Byers, Kathryn L. Cottingham, Irit Altman

Dartmouth Scholarship

Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua …


From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap Feb 2005

From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Circadian systems include slave oscillators and central pacemakers, and the cores of eukaryotic circadian clocks described to date are composed of transcription and translation feedback loops (TTFLs). In the model system Neurospora, normal circadian rhythmicity requires a TTFL in which a White Collar complex (WCC) activates expression of the frequency (frq) gene, and the FRQ protein feeds back to attenuate that activation. To further test the centrality of this TTFL to the circadian mechanism in Neurospora, we used low-amplitude temperature cycles to compare WT and frq-null strains under conditions in which a banding rhythm was elicited. WT cultures were entrained …


The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt Aug 2004

The Caenorhabditis Elegans F-Box Protein Sel-10 Promotes Female Development And May Target Fem-1 And Fem-3 For Degradation By The Proteasome, Sibylle Jager, Hillel T. Schwartz, H. Robert Horvitz, Barbara Conradt

Dartmouth Scholarship

The Caenorhabditis elegans F-box protein SEL-10 and its human homolog have been proposed to regulate LIN-12 Notch signaling by targeting for ubiquitin-mediated proteasomal degradation LIN-12 Notch proteins and SEL-12 PS1 presenilins, the latter of which have been implicated in Alzheimer's disease. We found that sel-10 is the same gene as egl-41, which previously had been defined by gain-of-function mutations that semidominantly cause masculinization of the hermaphrodite soma. Our results demonstrate that mutations causing loss-of-function of sel-10 also have masculinizing activity, indicating that sel-10 functions to promote female development. Genetically, sel-10 acts upstream of the genes fem-1, fem-2, and fem-3 and …


Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …


Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith Jan 2003

Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith

Dartmouth Scholarship

Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then …


A Pdz-Interacting Domain In Cftr Is An Apical Membrane Polarization Signal, Bryan D. Moyer, Jerod Denton, Katherine H. Karlson, Donna Reynolds, Shusheng Wang, John E. Mickle, Michael Milewski, Garry R. Cutting, William B. Guggino, Min Li, Bruce A. Stanton Nov 1999

A Pdz-Interacting Domain In Cftr Is An Apical Membrane Polarization Signal, Bryan D. Moyer, Jerod Denton, Katherine H. Karlson, Donna Reynolds, Shusheng Wang, John E. Mickle, Michael Milewski, Garry R. Cutting, William B. Guggino, Min Li, Bruce A. Stanton

Dartmouth Scholarship

Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 …