Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo Jan 2021

The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo

Theses and Dissertations--Toxicology and Cancer Biology

Prostate Apoptosis Response-4 (Par-4) is a tumor suppressor ubiquitously expressed in all tissues and able to selectively induce apoptosis in cancer cells. Although well established in the context of cancer, relatively little is known about the function of Par-4 in the healthy and non-tumorigenic context. Observations from our lab showed that Par-4 knockout mouse lines were obese and displayed adipocyte hypertrophy under a normal chow diet when compared to Par-4 wild-type mice. These Par-4 knockout mice exhibited hepatic steatosis and hyperinsulinemia as secondary consequences of obesity. Par-4 knockout mice displayed increased intestinal dietary fat absorption and its subsequent storage in …