Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physiology

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


Adult Spiny Mice (Acomys) Exhibit Endogenous Cardiac Recovery In Response To Myocardial Infarction, Hsuan Peng, Kazuhiro Shindo, Renée R. Donahue, Erhe Gao, Brooke M. Ahern, Bryana M. Levitan, Himi Tripathi, David Powell, Ahmed Noor, Garrett A. Elmore, Jonathan Satin, Ashley W. Seifert, Ahmed K. Abdel-Latif Nov 2021

Adult Spiny Mice (Acomys) Exhibit Endogenous Cardiac Recovery In Response To Myocardial Infarction, Hsuan Peng, Kazuhiro Shindo, Renée R. Donahue, Erhe Gao, Brooke M. Ahern, Bryana M. Levitan, Himi Tripathi, David Powell, Ahmed Noor, Garrett A. Elmore, Jonathan Satin, Ashley W. Seifert, Ahmed K. Abdel-Latif

Physiology Faculty Publications

Complex tissue regeneration is extremely rare among adult mammals. An exception, however, is the superior tissue healing of multiple organs in spiny mice (Acomys). While Acomys species exhibit the remarkable ability to heal complex tissue with minimal scarring, little is known about their cardiac structure and response to cardiac injury. In this study, we first examined baseline Acomys cardiac anatomy and function in comparison with commonly used inbred and outbred laboratory Mus strains (C57BL6 and CFW). While our results demonstrated comparable cardiac anatomy and function between Acomys and Mus, Acomys exhibited a higher percentage of cardiomyocytes displaying …


Editorial: Perturbations In Metabolic Cues: Implications For Adverse Cardiac Function Leading To Sudden Cardiac Death, Brian P. Delisle, Ademuyiwa S. Aromolaran Nov 2021

Editorial: Perturbations In Metabolic Cues: Implications For Adverse Cardiac Function Leading To Sudden Cardiac Death, Brian P. Delisle, Ademuyiwa S. Aromolaran

Physiology Faculty Publications

No abstract provided.


Editorial: Recent Advances In Cardiotoxicity Testing, Tamer M. A. Mohamed, Javid Moslehi, Jonathan Satin Nov 2021

Editorial: Recent Advances In Cardiotoxicity Testing, Tamer M. A. Mohamed, Javid Moslehi, Jonathan Satin

Physiology Faculty Publications

No abstract provided.


Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


Intravesical Cd74 And Cxcr4, Macrophage Migration Inhibitory Factor (Mif) Receptors, Mediate Bladder Pain, Shaojing Ye, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala, Pedro L. Vera Aug 2021

Intravesical Cd74 And Cxcr4, Macrophage Migration Inhibitory Factor (Mif) Receptors, Mediate Bladder Pain, Shaojing Ye, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala, Pedro L. Vera

Physiology Faculty Publications

BACKGROUND: Activation of intravesical protease activated receptor 4 (PAR4) leads to release of urothelial macrophage migration inhibitory factor (MIF). MIF then binds to urothelial MIF receptors to release urothelial high mobility group box-1 (HMGB1) and elicit bladder hyperalgesia. Since MIF binds to multiple receptors, we investigated the contribution of individual urothelial MIF receptors to PAR4-induced HMGB1 release in vivo and in vitro and bladder pain in vivo.

METHODOLOGY/PRINCIPAL FINDINGS: We tested the effect of intravesical pre-treatment with individual MIF or MIF receptor (CD74, CXCR4, CXCR2) antagonists on PAR4-induced HMGB1 release in vivo (female C57/BL6 mice) and in vitro (primary …


Reduced Mitochondrial Dna And Oxphos Protein Content In Skeletal Muscle Of Children With Cerebral Palsy, Ferdinand Von Walden, Ivan J. Vechetti Jr., Davis A. Englund, Vandré C. Figueiredo, Rodrigo Fernandez-Gonzalo, Kevin A. Murach, Jessica Pingel, John J. Mccarthy, Per Stål, Eva Pontén Jun 2021

Reduced Mitochondrial Dna And Oxphos Protein Content In Skeletal Muscle Of Children With Cerebral Palsy, Ferdinand Von Walden, Ivan J. Vechetti Jr., Davis A. Englund, Vandré C. Figueiredo, Rodrigo Fernandez-Gonzalo, Kevin A. Murach, Jessica Pingel, John J. Mccarthy, Per Stål, Eva Pontén

Physiology Faculty Publications

AIM: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP).

METHOD: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were …


Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle Jun 2021

Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle

Physiology Faculty Publications

Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a+/ΔKPQ). Electrocardiographic telemetry showed inducing the …


Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra Jan 2021

Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra

Sanders-Brown Center on Aging Faculty Publications

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging …


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee Jan 2021

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 …


Lat1 Protein Content Increases Following 12 Weeks Of Resistance Exercise Training In Human Skeletal Muscle, Paul A. Roberson, Christopher Brooks Mobley, Matthew A. Romero, Cody T. Haun, Shelby C. Osburn, Petey W. Mumford, Christopher G. Vann, Rory A. Greer, Arny A. Ferrando, Michael D. Roberts Jan 2021

Lat1 Protein Content Increases Following 12 Weeks Of Resistance Exercise Training In Human Skeletal Muscle, Paul A. Roberson, Christopher Brooks Mobley, Matthew A. Romero, Cody T. Haun, Shelby C. Osburn, Petey W. Mumford, Christopher G. Vann, Rory A. Greer, Arny A. Ferrando, Michael D. Roberts

Physiology Faculty Publications

Introduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies.

Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), …


Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …