Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Adult Spiny Mice (Acomys) Exhibit Endogenous Cardiac Recovery In Response To Myocardial Infarction, Hsuan Peng, Kazuhiro Shindo, Renée R. Donahue, Erhe Gao, Brooke M. Ahern, Bryana M. Levitan, Himi Tripathi, David Powell, Ahmed Noor, Garrett A. Elmore, Jonathan Satin, Ashley W. Seifert, Ahmed K. Abdel-Latif Nov 2021

Adult Spiny Mice (Acomys) Exhibit Endogenous Cardiac Recovery In Response To Myocardial Infarction, Hsuan Peng, Kazuhiro Shindo, Renée R. Donahue, Erhe Gao, Brooke M. Ahern, Bryana M. Levitan, Himi Tripathi, David Powell, Ahmed Noor, Garrett A. Elmore, Jonathan Satin, Ashley W. Seifert, Ahmed K. Abdel-Latif

Physiology Faculty Publications

Complex tissue regeneration is extremely rare among adult mammals. An exception, however, is the superior tissue healing of multiple organs in spiny mice (Acomys). While Acomys species exhibit the remarkable ability to heal complex tissue with minimal scarring, little is known about their cardiac structure and response to cardiac injury. In this study, we first examined baseline Acomys cardiac anatomy and function in comparison with commonly used inbred and outbred laboratory Mus strains (C57BL6 and CFW). While our results demonstrated comparable cardiac anatomy and function between Acomys and Mus, Acomys exhibited a higher percentage of cardiomyocytes displaying …


Dietary And Pharmacologic Manipulations Of Host Lipids And Their Interaction With The Gut Microbiome In Non-Human Primates, Jennifer M. Lang, Leslie R. Sedgeman, Lei Cai, Joseph D. Layne, Zhen Wang, Calvin Pan, Richard Lee, Ryan E. Temel, Aldons J. Lusis Aug 2021

Dietary And Pharmacologic Manipulations Of Host Lipids And Their Interaction With The Gut Microbiome In Non-Human Primates, Jennifer M. Lang, Leslie R. Sedgeman, Lei Cai, Joseph D. Layne, Zhen Wang, Calvin Pan, Richard Lee, Ryan E. Temel, Aldons J. Lusis

Physiology Faculty Publications

The gut microbiome influences nutrient processing as well as host physiology. Plasma lipid levels have been associated with the microbiome, although the underlying mechanisms are largely unknown, and the effects of dietary lipids on the gut microbiome in humans are not well-studied. We used a compilation of four studies utilizing non-human primates (Chlorocebus aethiops and Macaca fascicularis) with treatments that manipulated plasma lipid levels using dietary and pharmacological techniques, and characterized the microbiome using 16S rDNA. High-fat diets significantly reduced alpha diversity (Shannon) and the Firmicutes/Bacteroidetes ratio compared to chow diets, even when the diets had different compositions …


Hypertrophic Cardiomyopathy Β-Cardiac Myosin Mutation (P710r) Leads To Hypercontractility By Disrupting Super Relaxed State, Alison Schroer Vander Roest, Chao Liu, Makenna M. Morck, Kristina Bezold Kooiker, Gwanghyun Jung, Dan Song, Aminah Dawood, Arnav Jhingran, Gaspard Pardon, Sara Ranjbarvaziri, Giovanni Fajardo, Mingming Zhao, Kenneth S. Campbell, Beth L. Pruitt, James A. Spudich, Kathleen M. Ruppel, Daniel Bernstein Jun 2021

Hypertrophic Cardiomyopathy Β-Cardiac Myosin Mutation (P710r) Leads To Hypercontractility By Disrupting Super Relaxed State, Alison Schroer Vander Roest, Chao Liu, Makenna M. Morck, Kristina Bezold Kooiker, Gwanghyun Jung, Dan Song, Aminah Dawood, Arnav Jhingran, Gaspard Pardon, Sara Ranjbarvaziri, Giovanni Fajardo, Mingming Zhao, Kenneth S. Campbell, Beth L. Pruitt, James A. Spudich, Kathleen M. Ruppel, Daniel Bernstein

Physiology Faculty Publications

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed …