Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Divergence In Neuronal Calcium Dysregulation In Brain Aging And Animal Models Of Ad, Adam Ghoweri Jan 2020

Divergence In Neuronal Calcium Dysregulation In Brain Aging And Animal Models Of Ad, Adam Ghoweri

Theses and Dissertations--Pharmacology and Nutritional Sciences

Neuronal calcium dysregulation first garnered attention during the mid-1980’s as a key factor in brain aging, which led to the formulation of the Ca2+ hypothesis of brain aging and dementia. Indeed, many Ca2+-dependent cellular processes that change with age, including an increase in the afterhyperpolarization, a decrease in long-term potentiation, an increased susceptibility to long-term depression, and a reduction in short-term synaptic plasticity, have been identified. It was later determined that increased intracellular Ca2+ with age was due to increased Ca2+ channel density, elevated release from intracellular Ca2+ stores, and decreased Ca2+ buffering …


Cerebrovascular Smooth Muscle Cells As The Drivers Of Intramural Periarterial Drainage Of The Brain, Roxana Aldea, Roy O. Weller, Donna M. Wilcock, Roxana O Carare, Giles Richardson Jan 2019

Cerebrovascular Smooth Muscle Cells As The Drivers Of Intramural Periarterial Drainage Of The Brain, Roxana Aldea, Roy O. Weller, Donna M. Wilcock, Roxana O Carare, Giles Richardson

Physiology Faculty Publications

The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from …


Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik Jul 2012

Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that …