Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas Mar 2022

Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas

Bioelectrics Publications

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP …


Nanosecond Pulsed Platelet-Rich Plasma (Nsprp) Improves Mechanical And Electrial Cardiac Function Following Myocardial Reperfusion Injury, Barbara Y. Hargrave, Frency Varghese, Nektarios Barabutis, John Catravas, Christian Zemlin Jan 2016

Nanosecond Pulsed Platelet-Rich Plasma (Nsprp) Improves Mechanical And Electrial Cardiac Function Following Myocardial Reperfusion Injury, Barbara Y. Hargrave, Frency Varghese, Nektarios Barabutis, John Catravas, Christian Zemlin

School of Medical Diagnostics & Translational Sciences Faculty Publications

Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet-rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat-shock proteins and altered mitochondrial …