Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth College

Series

Promoter regions

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


Fully Codon-Optimized Luciferase Uncovers Novel Temperature Characteristics Of The Neurospora Clock, Van D. Gooch, Arun Mehra, Luis F. Larrondo, Julie Fox, Melissa Touroutoutoudis, Jennifer J. Loros, Jay C. Dunlap Aug 2007

Fully Codon-Optimized Luciferase Uncovers Novel Temperature Characteristics Of The Neurospora Clock, Van D. Gooch, Arun Mehra, Luis F. Larrondo, Julie Fox, Melissa Touroutoutoudis, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony …