Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Multichannel Modulation Of Depolarizing And Repolarizing Ion Currents Increases The Positive Rate-Dependent Action Potential Prolongation, Candido Cabo May 2023

Multichannel Modulation Of Depolarizing And Repolarizing Ion Currents Increases The Positive Rate-Dependent Action Potential Prolongation, Candido Cabo

Publications and Research

Prolongation of the action potential duration (APD) could prevent reentrant arrhythmias if prolongation occurs at the fast excitation rates of tachycardia with minimal prolongation at slow excitation rates (i.e., if prolongation is positive rate-dependent). APD prolongation by current anti-arrhythmic agents is either reverse (larger APD prolongation at slow rates than at fast rates) or neutral (similar APD prolongation at slow and fast rates), which may not result in an effective anti-arrhythmic action. In this report we show that, in computer models of the human ventricular action potential, the combined modulation of both depolarizing and repolarizing ion currents results in a …


Positive Rate-Dependent Action Potential Prolongation By Modulating Potassium Ion Channels, Candido Cabo Jun 2022

Positive Rate-Dependent Action Potential Prolongation By Modulating Potassium Ion Channels, Candido Cabo

Publications and Research

Pharmacological agents that prolong action potential duration (APD) to a larger extent at slow rates than at the fast excitation rates typical of ventricular tachycardia exhibit reverse rate dependence. Reverse rate dependence has been linked to the lack of efficacy of class III agents at preventing arrhythmias because the doses required to have an anti-arrhythmic effect at fast rates may have pro-arrhythmic effects at slow rates due to an excessive APD prolongation. In this report we show that, in computer models of the ventricular action potential, APD prolongation by accelerating phase 2 repolarization (by increasing IKs) and decelerating …