Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

An Extracellular Domain Of The Accessory Beta1 Subunit Is Required For Modulating Bk Channel Voltage Sensor And Gate, Aleksandra Gruslova, Iurii Semenov, Bin Wang Jan 2012

An Extracellular Domain Of The Accessory Beta1 Subunit Is Required For Modulating Bk Channel Voltage Sensor And Gate, Aleksandra Gruslova, Iurii Semenov, Bin Wang

Bioelectrics Publications

A family of tissue-specific auxiliary beta subunits modulates large conductance voltage- and calcium-activated potassium (BK) channel gating properties to suit their diverse functions. Paradoxically, beta subunits both promote BK channel activation through a stabilization of voltage sensor activation and reduce BK channel openings through an increased energetic barrier of the closed-to-open transition. The molecular determinants underlying beta subunit function, including the dual gating effects, remain unknown. In this study, we report the first identification of a beta1 functional domain consisting of Y74, S104, Y105, and I106 residues located in the extracellular loop of beta1. These amino acids reside within two …


Laminin Potentiates Differentiation Of Pcc4uva Embryonal Carcinoma Into Neurons, T. M. Sweeney, Roy C. Ogle, C. D. Little Sep 1990

Laminin Potentiates Differentiation Of Pcc4uva Embryonal Carcinoma Into Neurons, T. M. Sweeney, Roy C. Ogle, C. D. Little

School of Medical Diagnostics & Translational Sciences Faculty Publications

The embryonal carcinoma PCC4uva differentiates into neurons in response to treatment with retinoic acid and dbcAMP. We used this in vitro model system to study the effects of laminin on early neural differentiation. Laminin substrata markedly potentiate neural differentiation of retinoic acid and dbcAMP-treated cultures. Only laminin induced more rapid neural cell body clustering, neurite growth and neurite fasciculation as compared to type IV collagen, type I collagen, and fibronectin substrata. Exogenous laminin substrata promoted greater cell attachment, cellular spreading and growth to confluence than type IV collagen, type I collagen, fibronectin and glass substrata. Laminin-induced effects were inhibited by …