Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physiology

Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress Dec 2019

Assessing The Morphology Of Vesicles In Inhibitory Symmetric Synapses In Safety And Fear Conditions In The Rat Lateral Amygdala, Valerie Kress

Honors Scholar Theses

There is a significant lack of research on vesicle morphology in inhibitory synapses in the rat lateral amygdala. Published research focuses heavily on excitatory synapses in different parts of the rat brain and even this research rarely focuses on the different vesicle types in axons. It is reported that in these axons, synaptic vesicles traditionally contain neurotransmitters while small dense core vesicles contain active zone proteins and large dense core vesicles contain neuropeptides. This study aims to find correlations between vesicle morphology, location, contents, and potential function of each of the different types of vesicle in inhibitory axons.

After reviewing …


Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow Jun 2019

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow

FIU Electronic Theses and Dissertations

Reef ecosystems are composed of a variety of organisms, transient species of fish and invertebrates, microscopic bacteria and viruses, and structural organisms that build the living foundation, coral. Sessile cnidarians, corals and anemones, interpret dynamic environments of organisms and abiotic factors through a molecular interface. Recognition of foreign molecules occurs through innate immunity via receptors identifying conserved molecular patterns. Similarly, chemosensory receptors monitor the environment through specific ligands. Chemosensory receptors include ionotropic glutamate receptors (iGluRs), transmembrane ion channels involved in chemical sensing and neural signal transduction. Recently, an iGluR homolog was implicated in cnidarian immunological resistance to recurrent infections of …


Human Anatomy And Physiology I: Course Map With Expected Learning Outcomes, Carlos Liachovitzky May 2019

Human Anatomy And Physiology I: Course Map With Expected Learning Outcomes, Carlos Liachovitzky

Open Educational Resources

This document contains a list with all the Anatomy and Physiology I expected learning outcomes organized by topics, and grouped into ten units: 1. Introduction to A&P: body plan & organization; 2. Introduction to A&P: homeostasis; 3. The chemical level of organization; 4. Levels of organization: the cellular level of organization; 5. Levels of organization: the tissue level of organization; 6. Support and movement: integumentary system; 7. Support and movement: skeletal system & articulations; 8. Support and movement: muscular system; 9. Regulation, integration, and control: nervous system; 10. Regulation, integration, and control: special senses

Each learning outcome is referred to …


Rediscovering The Axolotl As A Model For Thyroid Hormone Dependent Development, Anne Crowner, Shivam Khatri, Dana Blichmann, S. Randal Voss Apr 2019

Rediscovering The Axolotl As A Model For Thyroid Hormone Dependent Development, Anne Crowner, Shivam Khatri, Dana Blichmann, S. Randal Voss

Neuroscience Faculty Publications

The Mexican axolotl (Ambystoma mexicanum) is an important model organism in biomedical research. Much current attention is focused on the axolotl's amazing ability to regenerate tissues and whole organs after injury. However, not forgotten is the axolotl's equally amazing ability to thwart aspects of tissue maturation and retain juvenile morphology into the adult phase of life. Unlike close tiger salamander relatives that undergo a thyroid hormone regulated metamorphosis, the axolotl does not typically undergo a metamorphosis. Instead, the axolotl exhibits a paedomorphic mode of development that enables a completely aquatic life cycle. The evolution of paedomorphosis allowed axolotls …


The Effects Of Bacterial Endotoxin Lps On Synaptic Transmission At The Neuromuscular Junction, Robin L. Cooper, Micaiah Mcnabb, Jeremy Nadolski Mar 2019

The Effects Of Bacterial Endotoxin Lps On Synaptic Transmission At The Neuromuscular Junction, Robin L. Cooper, Micaiah Mcnabb, Jeremy Nadolski

Biology Faculty Publications

The direct action of bacterial lipopolysaccharides (LPS) endotoxin was shown to enhance synaptic transmission and hyperpolarize the membrane potential at low doses, but block glutamatergic receptors and decrease observable spontaneous events at a high dosage. The dosage effects are LPS type specific. The hyperpolarization is not due to voltage-gated potassium channels or to activation of nitric oxide synthase (NOS). The effects are induced directly by LPS, independent of an immune response.


A Hindbrain Inhibitory Microcircuit Mediates Vagally-Coordinated Glucose Regulation, Carie R. Boychuk, Katalin Cs. Smith, Laura E. Peterson, Jeffery A. Boychuk, Corwin R. Butler, Isabel D. Derera, John J. Mccarthy, Bret N. Smith Feb 2019

A Hindbrain Inhibitory Microcircuit Mediates Vagally-Coordinated Glucose Regulation, Carie R. Boychuk, Katalin Cs. Smith, Laura E. Peterson, Jeffery A. Boychuk, Corwin R. Butler, Isabel D. Derera, John J. Mccarthy, Bret N. Smith

Physiology Faculty Publications

Neurons in the brainstem dorsal vagal complex integrate neural and humoral signals to coordinate autonomic output to viscera that regulate a variety of physiological functions, but how this circuitry regulates metabolism is murky. We tested the hypothesis that premotor, GABAergic neurons in the nucleus tractus solitarius (NTS) form a hindbrain micro-circuit with preganglionic parasympathetic motorneurons of the dorsal motor nucleus of the vagus (DMV) that is capable of modulating systemic blood glucose concentration. In vitro, neuronal activation or inhibition using either excitatory or inhibitory designer receptor exclusively activated by designer drugs (DREADDs) constructs expressed in GABAergic NTS neurons increased …


Cerebrovascular Smooth Muscle Cells As The Drivers Of Intramural Periarterial Drainage Of The Brain, Roxana Aldea, Roy O. Weller, Donna M. Wilcock, Roxana O Carare, Giles Richardson Jan 2019

Cerebrovascular Smooth Muscle Cells As The Drivers Of Intramural Periarterial Drainage Of The Brain, Roxana Aldea, Roy O. Weller, Donna M. Wilcock, Roxana O Carare, Giles Richardson

Physiology Faculty Publications

The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from …


Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson Jan 2019

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson

Research Data

This data collection describes the electrical properties of outer hair cells isolated from the mammalian cochlea of the domestic guinea pig. This data was obtained by performing whole-cell patch clamp voltage clamp assay on cells and monitoring the electrical admittance during a DC voltage ramp. The membrane capacitance was then calculated at each membrane potential from this admittance, and the voltage-independent and voltage-dependent membrane capacitance was determined upon further analysis. In some case the DC conductance was also measured by interrogation of the cell with voltage-step function which was calculated from the change in the mean steady-state current with respect …