Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Functional Neuroplasticity In The Nucleus Tractus Solitarius And Increased Risk Of Sudden Death In Mice With Acquired Temporal Lobe Epilepsy, Isabel D. Derera, Brian P. Delisle, Bret N. Smith Oct 2017

Functional Neuroplasticity In The Nucleus Tractus Solitarius And Increased Risk Of Sudden Death In Mice With Acquired Temporal Lobe Epilepsy, Isabel D. Derera, Brian P. Delisle, Bret N. Smith

Physiology Faculty Publications

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in individuals with refractory acquired epilepsy. Cardiorespiratory failure is the most likely cause in most cases, and central autonomic dysfunction has been implicated as a contributing factor to SUDEP. Neurons of the nucleus tractus solitarius (NTS) in the brainstem vagal complex receive and integrate vagally mediated information regarding cardiorespiratory and other autonomic functions, and GABAergic inhibitory NTS neurons play an essential role in modulating autonomic output. We assessed the activity of GABAergic NTS neurons as a function of epilepsy development in the pilocarpine-induced status epilepticus (SE) model of …


Brain Injury-Induced Synaptic Reorganization In Hilar Inhibitory Neurons Is Differentially Suppressed By Rapamycin, Corwin R. Butler, Jeffery A. Boychuk, Bret N. Smith Sep 2017

Brain Injury-Induced Synaptic Reorganization In Hilar Inhibitory Neurons Is Differentially Suppressed By Rapamycin, Corwin R. Butler, Jeffery A. Boychuk, Bret N. Smith

Physiology Faculty Publications

Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in …


Stress Increases Peripheral Axon Growth And Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs, Jessica K. Lerch, Jessica K. Alexander, Kathryn M. Madalena, Dario Motti, Tam Quach, Akhil Dhamija, Alicia Zha, John C. Gensel, Jeanette Webster Marketon, Vance P. Lemmon, John L. Bixby, Phillip G. Popovich Aug 2017

Stress Increases Peripheral Axon Growth And Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs, Jessica K. Lerch, Jessica K. Alexander, Kathryn M. Madalena, Dario Motti, Tam Quach, Akhil Dhamija, Alicia Zha, John C. Gensel, Jeanette Webster Marketon, Vance P. Lemmon, John L. Bixby, Phillip G. Popovich

Physiology Faculty Publications

Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult …