Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Histone Deacetylase Inhibitors Prevent Pulmonary Endothelial Hyperpermeability And Acute Lung Injury By Regulating Heat Shock Protein 90 Function, Atul D. Joshi, Nektarios Barabutis, Charalampos Birmpas, Christiana Dimitropoulou, Gagan Thangjam, Mary Cherian-Shaw, John Dennison, John D. Catravas Jan 2015

Histone Deacetylase Inhibitors Prevent Pulmonary Endothelial Hyperpermeability And Acute Lung Injury By Regulating Heat Shock Protein 90 Function, Atul D. Joshi, Nektarios Barabutis, Charalampos Birmpas, Christiana Dimitropoulou, Gagan Thangjam, Mary Cherian-Shaw, John Dennison, John D. Catravas

Bioelectrics Publications

Transendothelial hyperpermeability caused by numerous agonists is dependent on heat shock protein 90 (Hsp90) and leads to endothelial barrier dysfunction (EBD). Inhibition of Hsp90 protects and restores transendothelial permeability. Hyperacetylation of Hsp90, as by inhibitors of histone deacetylase (HDAC), suppresses its chaperone function and mimics the effects of Hsp90 inhibitors. In this study we assessed the role of HDAC in mediating lipopolysaccharide (LPS)-induced transendothelial hyperpermeability and acute lung injury (ALI). We demonstrate that HDAC inhibition protects against LPS-mediated EBD. Inhibition of multiple HDAC by the general inhibitors panobinostat or trichostatin provided protection against LPS-induced transendothelial hyperpermeability, acetylated and suppressed Hsp90 …


Bracing Of The Trunk And Neck Has A Differential Effect On Head Control During Gait, S. Morrison, D. M. Russell, K. Kelleran, M. L. Walker Jan 2015

Bracing Of The Trunk And Neck Has A Differential Effect On Head Control During Gait, S. Morrison, D. M. Russell, K. Kelleran, M. L. Walker

Rehabilitation Sciences Faculty Publications

During gait, the trunk and neck are believed to play an important role in dissipating the transmission of forces from the ground to the head. This attenuation process is important to ensure head control is maintained. The aim of the present study was to assess the impact of externally restricting the motion of the trunk and/or neck segments on acceleration patterns of the upper body and head and related trunk muscle activity. Twelve healthy adults performed three walking trials on a flat, straight 65-m walkway, under four different bracing conditions: 1) control-no brace; 2) neck-braced; 3) trunk-braced; and 4) neck-trunk …