Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …


Considerations For Studying Sex As A Biological Variable In Spinal Cord Injury, Andrew N. Stewart, Steven M. Maclean, Arnold J. Stromberg, Jessica P. Whelan, William M. Bailey, John C. Gensel, Melinda E. Wilson Aug 2020

Considerations For Studying Sex As A Biological Variable In Spinal Cord Injury, Andrew N. Stewart, Steven M. Maclean, Arnold J. Stromberg, Jessica P. Whelan, William M. Bailey, John C. Gensel, Melinda E. Wilson

Physiology Faculty Publications

In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of …


Predictive Screening Of M1 And M2 Macrophages Reveals The Immunomodulatory Effectiveness Of Post Spinal Cord Injury Azithromycin Treatment, John C. Gensel, Timothy J. Kopper, Bei Zhang, Michael B. Orr, William M. Bailey Jan 2017

Predictive Screening Of M1 And M2 Macrophages Reveals The Immunomodulatory Effectiveness Of Post Spinal Cord Injury Azithromycin Treatment, John C. Gensel, Timothy J. Kopper, Bei Zhang, Michael B. Orr, William M. Bailey

Spinal Cord and Brain Injury Research Center Faculty Publications

Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitrosystems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectively define the macrophage activation states after SCI in response to delayed azithromycin treatment. Mice were subjected to moderate-severe thoracic contusion SCI. Azithromycin or vehicle was administered beginning 30 minutes post-SCI and …


Dietary Supplementation With Organoselenium Accelerates Recovery Of Bladder Expression, But Does Not Improve Locomotor Function, Following Spinal Cord Injury, Carolyn A. Meyer, Ranjana Singh, Mackenzie T. Jones, Chen-Guang Yu, Ronan F. Power, James W. Geddes Jan 2016

Dietary Supplementation With Organoselenium Accelerates Recovery Of Bladder Expression, But Does Not Improve Locomotor Function, Following Spinal Cord Injury, Carolyn A. Meyer, Ranjana Singh, Mackenzie T. Jones, Chen-Guang Yu, Ronan F. Power, James W. Geddes

Spinal Cord and Brain Injury Research Center Faculty Publications

Selenium is an essential element required for activity of several antioxidant enzymes, including glutathione peroxidase. Because of the critical role of the antioxidant system in responding to traumatic events, we hypothesized that dietary selenium supplementation would enhance neuroprotection in a rodent model of spinal cord injury. Rats were maintained on either a control or selenium-enriched diet prior to, and following, injury. Dietary selenium supplementation, provided as selenized yeast added to normal rat chow, resulted in a doubling of selenium levels in the spinal cord. Dietary selenium reduced the time required for recovery of bladder function following thoracic spinal cord injury. …