Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

University of Kentucky

2021

Bmal1

Articles 1 - 1 of 1

Full-Text Articles in Physiology

Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle Jun 2021

Cardiomyocyte Deletion Of Bmal1 Exacerbates Qt- And Rr-Interval Prolongation In Scn5a+/Δkpq Mice, Elizabeth A. Schroder, Jennifer L. Wayland, Kaitlyn M. Samuels, Syed F. Shah, Don E. Burgess, Tanya S. Seward, Claude S. Elayi, Karyn A. Esser, Brian P. Delisle

Physiology Faculty Publications

Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a+/ΔKPQ). Electrocardiographic telemetry showed inducing the …