Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physiology

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap Dec 2015

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift …


P53: "The Wall Watcher", Nektarios Barabutis, John D. Catravas Oct 2015

P53: "The Wall Watcher", Nektarios Barabutis, John D. Catravas

Bioelectrics Publications

No abstract provided.


Bioregulatory Systems Medicine: An Innovative Approach To Integrating The Science Of Molecular Networks, Inflammation, And Systems Biology With The Patient's Autoregulatory Capacity?, Alyssa W Goldman, Yvonne Burmeister, Konstantin Cesnulevicius, Martha Herbert, Mary Kane, David Lescheid, Timothy Mccaffrey, Myron Schultz, Bernd Seilheimer, Alta Smit, Georges St Laurent, Brian Berman Aug 2015

Bioregulatory Systems Medicine: An Innovative Approach To Integrating The Science Of Molecular Networks, Inflammation, And Systems Biology With The Patient's Autoregulatory Capacity?, Alyssa W Goldman, Yvonne Burmeister, Konstantin Cesnulevicius, Martha Herbert, Mary Kane, David Lescheid, Timothy Mccaffrey, Myron Schultz, Bernd Seilheimer, Alta Smit, Georges St Laurent, Brian Berman

Medicine Faculty Publications

Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Oxygenation Properties And Isoform Diversity Of Snake Hemoglobins, Jay F. Storz, Chandrasekhar Natarajan, Hideaki Moriyama, Federico G. Hoffmann, Tobias Wang, Angela Fago, Hans Malte, Johannes Overgaard, Roy E. Weber Jan 2015

Oxygenation Properties And Isoform Diversity Of Snake Hemoglobins, Jay F. Storz, Chandrasekhar Natarajan, Hideaki Moriyama, Federico G. Hoffmann, Tobias Wang, Angela Fago, Hans Malte, Johannes Overgaard, Roy E. Weber

Jay F. Storz Publications

Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from …


The Proteomic Response In The Crustacean Molting Gland Of Land Crab Gecarcinus Lateralis In Response To Artificially Induced Molting Throughout Its Molting Cycle., Andrea Reider, Talia B. Head, Lars Tomanek, Donald L. Mykles Jan 2015

The Proteomic Response In The Crustacean Molting Gland Of Land Crab Gecarcinus Lateralis In Response To Artificially Induced Molting Throughout Its Molting Cycle., Andrea Reider, Talia B. Head, Lars Tomanek, Donald L. Mykles

STAR Program Research Presentations

Molting in crustaceans is a highly complex physiological process involving negative regulation by two paired endocrine glands, the X-organ/sinus gland complex (XO/SG) and the Y-organ (YO). The XO/SG complex is responsible for making molt-inhibiting hormone (MIH) which negatively regulates synthesis of molting hormones (ecdysteroids) by the YO. Eyestalk ablation (ESA) removes the source of MIH and provides an experimental means to manipulate and induce molting, although the physiological effects of ESA on the YO have not been fully characterized. Analysis of gene expression in the XOs and YOs has lead to the development of a proposed molecular signaling pathway which …