Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Mutations In Dmrt3 Affect Locomotion In Horses And Spinal Circuit Function In Mice, Lisa S. Andersson, Martin Larhammar, Fatima Memic, Hanna Wootz, Doreen Schwochow, Carl-Johan Rubin, Kalicharan Patra, Thorvaldur Arnason, Lisbeth Wellbring, Göran Hjälm, Freyja Imsland, Jessica Lynn Petersen, Molly E. Mccue, James R. Mickelson, Gus Cothran, Nadav Ahituv, Lars Roepstorff, Sofia Mikko, Anna Vallstedt, Gabriella Lindgren, Leif Andersson, Klas Kullander Aug 2012

Mutations In Dmrt3 Affect Locomotion In Horses And Spinal Circuit Function In Mice, Lisa S. Andersson, Martin Larhammar, Fatima Memic, Hanna Wootz, Doreen Schwochow, Carl-Johan Rubin, Kalicharan Patra, Thorvaldur Arnason, Lisbeth Wellbring, Göran Hjälm, Freyja Imsland, Jessica Lynn Petersen, Molly E. Mccue, James R. Mickelson, Gus Cothran, Nadav Ahituv, Lars Roepstorff, Sofia Mikko, Anna Vallstedt, Gabriella Lindgren, Leif Andersson, Klas Kullander

Department of Animal Science: Faculty Publications

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favorable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes …


Genomics Of Mature And Immature Olfactory Sensory Neurons, Melissa D. Nickell, Patrick Breheny, Arnold J. Stromberg, Timothy S. Mcclintock Aug 2012

Genomics Of Mature And Immature Olfactory Sensory Neurons, Melissa D. Nickell, Patrick Breheny, Arnold J. Stromberg, Timothy S. Mcclintock

Physiology Faculty Publications

The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein …


Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid Aug 2012

Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid

STAR Program Research Presentations

Acetaminophen is a common analgesic and antipyretic. Metabolism of acetaminophen and acetaminophen-induced liver necrosis are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drug is distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Acetaminophen is usually safe and effective when taken as recommended, but consumption at higher levels may lead to liver damage. Additionally, other factors such as alcoholic liver disease, smoking, and malnutrition affect the maximum safe dose of acetaminophen.


Evolution Of Starvation Resistance In Drosophila Melanogaster: Measurement Of Direct And Correlated Responses To Artificial Selection, Tiffany E. Schwasinger-Schmidt, Stephen D. Kachman, Lawrence G. Harshman Jan 2012

Evolution Of Starvation Resistance In Drosophila Melanogaster: Measurement Of Direct And Correlated Responses To Artificial Selection, Tiffany E. Schwasinger-Schmidt, Stephen D. Kachman, Lawrence G. Harshman

Lawrence G. Harshman Publications

Laboratory selection for resistance to starvation has been conducted under relatively controlled conditions to investigate direct and correlated responses to artificial selection. With regard to starvation resistance, there are three physiological routes by which the trait can evolve: resource accumulation, energy conservation and starvation tolerance. A majority of energetic compounds and macromolecules including triglycerides, trehalose and other sugars, and soluble protein increased in abundance as a result of selection. Movement was additionally investigated with selected males moving less than control males and selected females exhibiting a similar response to selection. Results obtained from this study supported two of the possible …