Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

Machine-Learning To Stratify Diabetic Patients Using Novel Cardiac Biomarkers And Integrative Genomics, Quincy A. Hathaway, Skyler M. Roth, Mark V. Pinti, Daniel C. Sprando, Amina Kunovac, Andrya J. Durr, Chris C. Cook, Garret K. Fink, Tristen B. Cheuvront, Jasmine H. Grossman, Ghadah A. Aljahli, Andrew D. Taylor, Andrew P. Giromini, Jessica L. Allen, John M. Hollander Jan 2019

Machine-Learning To Stratify Diabetic Patients Using Novel Cardiac Biomarkers And Integrative Genomics, Quincy A. Hathaway, Skyler M. Roth, Mark V. Pinti, Daniel C. Sprando, Amina Kunovac, Andrya J. Durr, Chris C. Cook, Garret K. Fink, Tristen B. Cheuvront, Jasmine H. Grossman, Ghadah A. Aljahli, Andrew D. Taylor, Andrew P. Giromini, Jessica L. Allen, John M. Hollander

Faculty & Staff Scholarship

Background: Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. Methods: Right atrial appendages from 50 patients, 30 non-diabetic and 20 …


Exercise Training Prevents The Perivascular Adipose Tissue-Induced Aortic Dysfunction With Metabolic Syndrome, Evan Devallance, Kayla W. Branyan, Kent C. Lemaster, Ray Anderson, Kent L. Marshall, I. Mark Olfert, David M. Smith, Eric E. Kelly, Randy W. Bryner, Jefferson C. Frisbee, Paul D. Chantler Jan 2019

Exercise Training Prevents The Perivascular Adipose Tissue-Induced Aortic Dysfunction With Metabolic Syndrome, Evan Devallance, Kayla W. Branyan, Kent C. Lemaster, Ray Anderson, Kent L. Marshall, I. Mark Olfert, David M. Smith, Eric E. Kelly, Randy W. Bryner, Jefferson C. Frisbee, Paul D. Chantler

Faculty & Staff Scholarship

The aim of the study was to determine the effects of exercise training on improving the thoracic perivascularadipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syn-drome and its subsequent actions on aortic function.Methods:Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks ofcontrol conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the inter-vention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a forcetransducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene …


Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz Jan 2018

Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz

Faculty & Staff Scholarship

Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. …