Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physiology

Prevention Of Renal Apob Retention Is Protective Against Diabetic Nephropathy: Role Of Tgf-Β Inhibition, Patricia G. Wilson, Joel C. Thompson, Meghan S. Yoder, Richard Charnigo, Lisa R. Tannock Sep 2017

Prevention Of Renal Apob Retention Is Protective Against Diabetic Nephropathy: Role Of Tgf-Β Inhibition, Patricia G. Wilson, Joel C. Thompson, Meghan S. Yoder, Richard Charnigo, Lisa R. Tannock

Internal Medicine Faculty Publications

Animal studies demonstrate that hyperlipidemia and renal lipid accumulation contribute to the pathogenesis of diabetic nephropathy (DN). We previously demonstrated that renal lipoproteins colocalize with biglycan, a renal proteoglycan. The purpose of this study was to determine whether prevention of renal lipid (apoB) accumulation attenuates DN. Biglycan-deficient and biglycan wild-type Ldlr−/− mice were made diabetic via streptozotocin and fed a high cholesterol diet. As biglycan deficiency is associated with elevated transforming growth factor-β (TGF-β), in some experiments mice were injected with either the TGF-β-neutralizing antibody, 1D11, or with 13C4, an irrelevant control antibody. Biglycan deficiency had no significant effect …


Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba Aug 2017

Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, …


Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns Aug 2017

Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translation elongation factor P (EF‐P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF‐P is post‐translationally modified with a 5‐aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF‐P‐5 aminopentanone to EF‐P‐5 aminopentanol. In the absence of YmfI, accumulation of 5‐aminopentanonated EF‐P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF‐P, including one that changed the conserved modification site (Lys …


Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba Aug 2017

Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17 ) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more …


Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba Feb 2017

Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by …


Mitochondria Mediate Cell Membrane Repair And Contribute To Duchenne Muscular Dystrophy., Maria C Vila, Sree Rayavarapu, Marshall W Hogarth, Jack H Van Der Meulen, Adam Horn, Aurelia Defour, Shin'ichi Takeda, Kristy J. Brown, Yetrib Hathout, Kanneboyina Nagaraju, Jyoti K. Jaiswal Feb 2017

Mitochondria Mediate Cell Membrane Repair And Contribute To Duchenne Muscular Dystrophy., Maria C Vila, Sree Rayavarapu, Marshall W Hogarth, Jack H Van Der Meulen, Adam Horn, Aurelia Defour, Shin'ichi Takeda, Kristy J. Brown, Yetrib Hathout, Kanneboyina Nagaraju, Jyoti K. Jaiswal

Genomics and Precision Medicine Faculty Publications

Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic …


Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera Jan 2017

Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote …


Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart Jan 2017

Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until …