Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


Ablation Of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction In Diabetics., Priyanka Prathipati, Naira Metreveli, Shyam Sundar Nandi, Suresh C. Tyagi, Paras K. Mishra Mar 2016

Ablation Of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction In Diabetics., Priyanka Prathipati, Naira Metreveli, Shyam Sundar Nandi, Suresh C. Tyagi, Paras K. Mishra

Journal Articles: Cellular & Integrative Physiology

Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12-14 week male WT (normoglycemic sibling of Akita), Akita, and Ins(2+∕-)/MMP9(-∕-) (DKO) mice. DKO mice were generated by cross-breeding male Ins2(+∕-) Akita (T1D) …