Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cellular and Molecular Physiology

University of Nebraska Medical Center

Series

2016

Redox

Articles 1 - 1 of 1

Full-Text Articles in Physiology

Increased Mitochondrial Superoxide In The Brain, But Not Periphery, Sensitizes Mice To Angiotensin Ii-Mediated Hypertension., Adam J. Case, Jun Tian, Matthew C. Zimmerman Nov 2016

Increased Mitochondrial Superoxide In The Brain, But Not Periphery, Sensitizes Mice To Angiotensin Ii-Mediated Hypertension., Adam J. Case, Jun Tian, Matthew C. Zimmerman

Journal Articles: Cellular & Integrative Physiology

Angiotensin II (AngII) elicits the production of superoxide (O2(•-)) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2(•-) in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2(•-) is causal in the development of AngII-induced hypertension, or if mitochondrial O2(•-) in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2(•-) in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial …