Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Cellular And Subcellular Oxidative Stress Parameters Following Severe Spinal Cord Injury, Nishant P. Visavadiya, Samir P. Patel, Jenna L. Vanrooyen, Patrick G. Sullivan, Alexander G. Rabchevsky Aug 2016

Cellular And Subcellular Oxidative Stress Parameters Following Severe Spinal Cord Injury, Nishant P. Visavadiya, Samir P. Patel, Jenna L. Vanrooyen, Patrick G. Sullivan, Alexander G. Rabchevsky

Spinal Cord and Brain Injury Research Center Faculty Publications

The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24 h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2•-) and hydrogen peroxide (H2O …


Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf May 2016

Quantitative Mass Spectrometry Reveals Changes In Histone H2b Variants As Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation, Matthew Rea, Tingting Jiang, Rebekah Eleazer, Meredith Eckstein, Alan G. Marshall, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here …