Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney Jan 2023

Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney

Graduate Theses, Dissertations, and Problem Reports

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, which refers to the presence of imperative molecular factors in the oocyte that are critical for high oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Over the past few decades, the development and optimization of assisted reproductive technologies, particularly in vitrofertilization, have enabled the beef and dairy industries to advance cattle genetics and productivity. However, only approximately 40% of bovine embryos will develop to the blastocyst stage in vitro. In addition, bovine embryos …


The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current Jan 2023

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current

Graduate Theses, Dissertations, and Problem Reports

Early embryonic loss is a significant factor in livestock species' infertility, resulting in an economic deficit. In cattle, the in vivo fertilization rate is ~90%, with an average calving rate of about 55%, indicating an embryonic-fetal mortality rate of roughly 35%. Further, 70-80% of total embryonic loss in cattle occurs during the first three weeks after insemination, particularly between days 7-16. Growing evidence indicates that the oocyte plays an active role in regulating critical aspects of the reproductive process required for successful fertilization, embryo development, and pregnancy. However, defining oocyte quality remains enigmatic. Recently, many have abandoned the notion that …


Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill Jan 2018

Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill

Faculty & Staff Scholarship

DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …