Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physiology

Does Vdac2 Have A Bh3 Domain?, Lillian Ferkany May 2023

Does Vdac2 Have A Bh3 Domain?, Lillian Ferkany

Honors Theses

Mitochondrial outer membrane permeabilization (MOMP) by Bax oligomerization triggers apoptosis. BCl-2 family proteins, classified as BH3 only proteins, pro-survival proteins, or pro-apoptotic proteins, control apoptosis partly through their agonist or antagonistic effects on Bax, which are mediated by their conserved BH3 domains. All BH3 domains form an alpha helix containing 5-7 conserved hydrophobic residues, designated H0-H5, and one conserved aspartic acid that drive interaction with Bax and other ‘multi-domain’ BCl-2 members. BH3 agonists induce Bax oligomerization, while BH3 antagonists sequester Bax to prevent MOMP. We discovered that voltage dependent anion channels (VDACs) in the MOM contain a putative BH3-like domain …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Characterization Of Secondhand Smoke (Shs) And Materno-Fetal Interactions In Receptors For Advanced Glycation End-Products (Rage)-Targeted Mice, Duane Ray Winden May 2014

Characterization Of Secondhand Smoke (Shs) And Materno-Fetal Interactions In Receptors For Advanced Glycation End-Products (Rage)-Targeted Mice, Duane Ray Winden

Theses and Dissertations

Receptors for advanced glycation end-products (RAGE) are pattern recognition receptors of the immunoglobulin superfamily highly expressed in the lung. Likely functions include the modulation of pulmonary inflammation during disease. However, the contributions of RAGE in the developing lung in cases where secondhand smoke (SHS) exposure occurs are unknown. In order to test the hypothesis that RAGE misexpression adversely affects lung morphogenesis, we exposed gestating dams to a controlled dose of SHS during the last four critical days of in utero lung morphogenesis. We discovered that both maternal and fetal lungs respond to SHS by up-regulating RAGE. Exposed fetuses were markedly …


Inhibition Of Pim And Axl Kinases As Potential Treatments For A Variety Of Hematological Malignancies And Solid Tumors, Kent James Carpenter Feb 2014

Inhibition Of Pim And Axl Kinases As Potential Treatments For A Variety Of Hematological Malignancies And Solid Tumors, Kent James Carpenter

Theses and Dissertations

This thesis is divided into three chapters. In each case, the goal is to achieve inhibition of a growth kinase (PIM or AXL) and subsequent arrest of cell growth and induction of apoptosis (in vitro cell culture models) or decrease in tumor volume (in vivo xenograft studies). Chapter one and chapter two discuss inhibition of proviral integration site for Moloneymurine leukemia virus (PIM) kinases. The three PIM kinases, PIM-1, PIM-2, and PIM-3, are a subfamily of serine/threonine kinases that are known to be involved in signaling pathways as downstream effectors of signal transducer and activator of transcription-5 (STAT5) signaling and …


Mitochondrial Dynamics: Exploring A Novel Target Against Myocardial Ischemia-Reperfusion Injury, Yi Dong Jan 2014

Mitochondrial Dynamics: Exploring A Novel Target Against Myocardial Ischemia-Reperfusion Injury, Yi Dong

Wayne State University Dissertations

Mitochondrial fusion and fission, collectively termed mitochondrial dynamics, are among the core mechanisms responsible for maintaining mitochondrial health and functional integrity. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission. Recent studies suggest that i) mitochondrial dynamics, particularly, mitochondrial fission, serves as a mediator of cell fate in the setting of ischemia-reperfusion (IR) injury, and, ii) inhibition of DRP1 and mitochondrial fission provides cardioprotection against IR injury. However, the precise role of DRP1 translocation to mitochondria in the pathogenesis of myocardial ischemia-reperfusion injury has not been established.

Using an established model of hypoxia-reoxygenation (HR) in cultured HL-1 cardiomyocytes, …


Med13p Prevents Stress-Independent Mitochondrial Hyperfragmentation And Aberrant Apoptosis Activation In Saccharomyces Cerevisiae By Controlling Cyclin C Nuclear Localization, Svetlana Khakhina Aug 2013

Med13p Prevents Stress-Independent Mitochondrial Hyperfragmentation And Aberrant Apoptosis Activation In Saccharomyces Cerevisiae By Controlling Cyclin C Nuclear Localization, Svetlana Khakhina

Graduate School of Biomedical Sciences Theses and Dissertations

During aging, and as a result of environmental changes, cells are exposed to elevated levels of reactive oxygen species (ROS). High ROS levels induce lipid oxidation, protein aggregation, mitochondrial hyperfragmentation, DNA damage and programmed cell death (PCD), also called apoptosis. PCD is a highly regulated process and its misregulation has been linked to neurodegenerative diseases and cancer development.

Our hypothesis is that cyclin C plays a role in the initiation of apoptosis. During normal conditions, cyclin C represses the transcription of stress response genes (SRG). In response to stress, cyclin C translocates to the cytoplasm where it facilitates mitochondrial hyperfragmentation …


Susceptibility Of Apoptotic Cells To Hydrolysis By Spla2: Molecular Basis And Mechanisms Defined, Elizabeth Gibbons Jul 2013

Susceptibility Of Apoptotic Cells To Hydrolysis By Spla2: Molecular Basis And Mechanisms Defined, Elizabeth Gibbons

Theses and Dissertations

Secretory phospholipase A2 hydrolyzes phospholipids at a lipid-water interface, resulting in pro-inflammatory products being released from cell membranes. Healthy cells are resistant to cleavage by this enzyme, but apoptotic cells become susceptible to its activity. Only bilayers with certain characteristics are able to be hydrolyzed. Most recently, studies in this lab have emphasized the idea that the biophysical state of the bilayer (in terms of lipid order, spacing, and fluidity) is relevant in determining the probability of one phospholipid escaping the membrane to be hydrolyzed. Prior to this study, it had been shown that apoptotic cells undergo biophysical alterations that …


Intrinsic Apoptotic Pathway: Effects Of Calcium On Murine Cytochrome C Release In Brain And Liver Mitochondria, Dane M. Edwards Apr 2013

Intrinsic Apoptotic Pathway: Effects Of Calcium On Murine Cytochrome C Release In Brain And Liver Mitochondria, Dane M. Edwards

Senior Honors Theses

A cell may use one of three main apoptotic pathways leading to programmed cell death: the extrinsic pathway, the perforin/granzyme pathway and the intrinsic pathway. The most pertinent to this discussion is the intrinsic pathway, which utilizes the mitochondria as an essential intermediary. Mitochondria’s primary function in relation to this pathway is the subsequent release of pro-apoptotic factors including cytochrome c, which activate a caspase cascade leading to the death of the cell. Cytochrome c is released partly due to an increase in cytosolic calcium levels. Two methods of the release of cytochrome c have been proposed. The first is …


Characterization Of Altered Epithelial Cell Turnover And Differentiation In Embryonic Murine Lungs That Over-Express Receptors For Advanced Glycation End-Products (Rage), Jeffrey Alan Stogsdill May 2012

Characterization Of Altered Epithelial Cell Turnover And Differentiation In Embryonic Murine Lungs That Over-Express Receptors For Advanced Glycation End-Products (Rage), Jeffrey Alan Stogsdill

Theses and Dissertations

Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors highly expressed in the lung that modulate pulmonary inflammation during disease. However, the contributions of RAGE signaling are unknown during pulmonary organogenesis. In order to test the hypothesis that RAGE misexpression adversely affects lung morphogenesis, conditional transgenic mice were generated that over-express RAGE in alveolar type II cells of the lung. When RAGE is over-expressed throughout embryogenesis, severe lung hypoplasia ensues, culminating in perinatal lethality. Flow cytometry and immunohistochemistry employing cell-specific markers for various distal cell types demonstrated anomalies in key epithelial cell populations resulting from RAGE up-regulation through …


Treatment Of Aortic Heart Valve Conduit With Glutamine And Heat Shock As A Means To Deter The Constituent Cellular Population From Becoming Apoptotic, Alyce Marie Linthurst Jones Apr 2012

Treatment Of Aortic Heart Valve Conduit With Glutamine And Heat Shock As A Means To Deter The Constituent Cellular Population From Becoming Apoptotic, Alyce Marie Linthurst Jones

Theses and Dissertations in Biomedical Sciences

Cryopreserved allograft heart valves represent the best solution for a patient with a failing heart valve. However, the constituent cells become apoptotic and within months of transplant the heart valve becomes acellular and the recipient's cells do not repopulate the allograft (3, 51). A strategy to prevent this situation would be to minimize or prevent apoptosis from occurring by strategically altering steps during heart valve processing. Recently it has been demonstrated that: 1) Heat shock protein 70 is a negative modulator of the apoptotic cascade; 2) Cells in culture exposed to hypothermic conditions produce heat shock protein 70 upon rewarming; …


Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova Jan 2011

Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova

Bioelectrics Publications

In this study, we determined the LD50 (50% lethal dose) for cell death, and the ED50 (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD50 varied substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa. PS externalized at doses equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr …


Mechanisms By Which Apoptotic Membranes Become Susceptible To Secretory Phospholipase A2, Rachel Williams Bailey Mar 2008

Mechanisms By Which Apoptotic Membranes Become Susceptible To Secretory Phospholipase A2, Rachel Williams Bailey

Theses and Dissertations

During apoptosis, changes occur in T-lymphocyte membranes that render them susceptible to hydrolysis by secretory phospholipase A2 (sPLA2). To study the relevant mechanisms, a simplified model of apoptosis using a calcium ionophore was first applied. Kinetic and flow cytometry experiments provided key observations regarding ionophore treatment: initial hydrolysis rate was elevated, total reaction product was increased four-fold, and adsorption of the enzyme to the membrane surface was unaltered. Analysis of these results suggested that susceptibility during calcium-induced apoptosis is limited by substrate availability rather than enzyme adsorption. Fluorescence experiments identified three membrane alterations that might affect substrate access to the …