Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physiology

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman Oct 2018

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman

Physiology Faculty Publications

Behind only Alzheimer’s disease, vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia, affecting roughly 10–40% of dementia patients. While there is no cure for VCID, several risk factors for VCID, such as diabetes, hypertension, and stroke, have been identified. Elevated plasma levels of homocysteine, termed hyperhomocysteinemia (HHcy), are a major, yet underrecognized, risk factor for VCID. B vitamin deficiency, which is the most common cause of HHcy, is common in the elderly. With B vitamin supplementation being a relatively safe and inexpensive therapeutic, the treatment of HHcy-induced VCID would seem straightforward; however, …


Editorial: Ion Channel Trafficking And Cardiac Arrhythmias, Marcel A. G. Van Der Heyden, Brian P. Delisle, Hugues Abriel Sep 2018

Editorial: Ion Channel Trafficking And Cardiac Arrhythmias, Marcel A. G. Van Der Heyden, Brian P. Delisle, Hugues Abriel

Physiology Faculty Publications

No abstract provided.


Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson Jun 2018

Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson

Physiology Faculty Publications

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer’s Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In …


Adropin: An Endocrine Link Between The Biological Clock And Cholesterol Homeostasis, Sarbani Ghoshal, Joseph R. Stevens, Cyrielle Billon, Clemence Girardet, Sadichha Sitaula, Arthur S. Leon, D.C. Rao, James S. Skinner, Tuomo Rankinen, Claude Bouchard, Marinelle V. Nuñez, Kimber L. Stanhope, Deborah A. Howatt, Alan Daugherty, Jinsong Zhang, Matthew Schuelke, Edward P. Weiss, Alisha R. Coffey, Brian J. Bennett, Praveen Sethupathy, Thomas P. Burris, Peter J. Havel, Andrew A. Butler Feb 2018

Adropin: An Endocrine Link Between The Biological Clock And Cholesterol Homeostasis, Sarbani Ghoshal, Joseph R. Stevens, Cyrielle Billon, Clemence Girardet, Sadichha Sitaula, Arthur S. Leon, D.C. Rao, James S. Skinner, Tuomo Rankinen, Claude Bouchard, Marinelle V. Nuñez, Kimber L. Stanhope, Deborah A. Howatt, Alan Daugherty, Jinsong Zhang, Matthew Schuelke, Edward P. Weiss, Alisha R. Coffey, Brian J. Bennett, Praveen Sethupathy, Thomas P. Burris, Peter J. Havel, Andrew A. Butler

Physiology Faculty Publications

Objective

Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO) gene linked to metabolic control and vascular function.

Methods

Associations between plasma adropin concentrations, demographics (sex, age, BMI) and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models.

Results

In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C) levels in men (n = 349), but not in women (n = …


Abnormal Contractility In Human Heart Myofibrils From Patients With Dilated Cardiomyopathy Due To Mutations In Ttn And Contractile Protein Genes, Petr G. Vikhorev, Natalia Smoktunowicz, Alex B. Munster, O'Neal Copeland, Sawa Kostin, Cecile Montgiraud, Andrew E. Messer, Mohammad R. Toliat, Amy Li, Cristobal G. Dos Remedios, Sean Lal, Cheavar A. Blair, Kenneth S. Campbell, Maya E. Guglin, Ralph Knoll, Steven B. Marston Nov 2017

Abnormal Contractility In Human Heart Myofibrils From Patients With Dilated Cardiomyopathy Due To Mutations In Ttn And Contractile Protein Genes, Petr G. Vikhorev, Natalia Smoktunowicz, Alex B. Munster, O'Neal Copeland, Sawa Kostin, Cecile Montgiraud, Andrew E. Messer, Mohammad R. Toliat, Amy Li, Cristobal G. Dos Remedios, Sean Lal, Cheavar A. Blair, Kenneth S. Campbell, Maya E. Guglin, Ralph Knoll, Steven B. Marston

Physiology Faculty Publications

Dilated cardiomyopathy (DCM) is an important cause of heart failure. Single gene mutations in at least 50 genes have been proposed to account for 25–50% of DCM cases and up to 25% of inherited DCM has been attributed to truncating mutations in the sarcomeric structural protein titin (TTNtv). Whilst the primary molecular mechanism of some DCM-associated mutations in the contractile apparatus has been studied in vitro and in transgenic mice, the contractile defect in human heart muscle has not been studied. In this study we isolated cardiac myofibrils from 3 TTNtv mutants, and 3 with contractile protein mutations (TNNI3 …


Transforming Growth Factor-Β In Thoracic Aortic Aneurysms: Good, Bad, Or Irrelevant?, Alan Daugherty, Zheying Chen, Hisashi Sawada, Debra L. Rateri, Mary B. Sheppard Jan 2017

Transforming Growth Factor-Β In Thoracic Aortic Aneurysms: Good, Bad, Or Irrelevant?, Alan Daugherty, Zheying Chen, Hisashi Sawada, Debra L. Rateri, Mary B. Sheppard

Physiology Faculty Publications

No abstract provided.


Modulating Beta-Cardiac Myosin Function At The Molecular And Tissue Levels, Wanjian Tang, Cheavar A. Blair, Shane D. Walton, András Málnási-Csizmadia, Kenneth S. Campbell, Christopher M. Yengo Jan 2017

Modulating Beta-Cardiac Myosin Function At The Molecular And Tissue Levels, Wanjian Tang, Cheavar A. Blair, Shane D. Walton, András Málnási-Csizmadia, Kenneth S. Campbell, Christopher M. Yengo

Physiology Faculty Publications

Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause …