Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physiology

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson Jan 2019

Data Collection Curated With An Application Ontology Describes The Methods And Results Upon Performing An Ex-Vivo Voltage-Clamp Assay On Outer Hair Cells Of The Mammalian Cochlea, Brenda Farrell, Jason Bengtson

Research Data

This data collection describes the electrical properties of outer hair cells isolated from the mammalian cochlea of the domestic guinea pig. This data was obtained by performing whole-cell patch clamp voltage clamp assay on cells and monitoring the electrical admittance during a DC voltage ramp. The membrane capacitance was then calculated at each membrane potential from this admittance, and the voltage-independent and voltage-dependent membrane capacitance was determined upon further analysis. In some case the DC conductance was also measured by interrogation of the cell with voltage-step function which was calculated from the change in the mean steady-state current with respect …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Theoretical Investigation Of Intra- And Inter-Cellular Spatiotemporal Calcium Patterns In Microcirculation, Jaimit B. Parikh Jan 2015

Theoretical Investigation Of Intra- And Inter-Cellular Spatiotemporal Calcium Patterns In Microcirculation, Jaimit B. Parikh

FIU Electronic Theses and Dissertations

Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC …


Computational Optogenetics: Empirically-Derived Voltage- And Light-Sensitive Channelrhodopsin-2 Model, John C. Williams, Jianjin Xu, Zhongju Lu, Aleksandra Klimas, Xuxin Chen, Christina M. Ambrosi, Ira S. Cohen, Emilia Entcheva Sep 2013

Computational Optogenetics: Empirically-Derived Voltage- And Light-Sensitive Channelrhodopsin-2 Model, John C. Williams, Jianjin Xu, Zhongju Lu, Aleksandra Klimas, Xuxin Chen, Christina M. Ambrosi, Ira S. Cohen, Emilia Entcheva

Department of Biomedical Engineering Faculty Publications

Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silicoprediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, …


From Gibbons To Gymnasts: A Look At The Biomechanics And Neurophysiology Of Brachiation In Gibbons And Its Human Rediscovery, Emma Et Pennock May 2013

From Gibbons To Gymnasts: A Look At The Biomechanics And Neurophysiology Of Brachiation In Gibbons And Its Human Rediscovery, Emma Et Pennock

Student Works

This conference paper serves to examine the evolutionary linkages of a brachiating ancestor in humans, the biomechanical and neurophysiology of modern day brachiators, and the human rediscovery of this form of locomotion. Brachiation is arguably one of the most metabolically effective modes of travel by any organism and can be observed most meritoriously in Gibbons. The purpose of the research conducted for this paper was to encourage further exploration of the neurophysiological similarities and differences between humans and non-human primates. The hope is that in spurring more interest and research in this area, further possibilities for rehabilitating brain injury will …


Mechanism Of Catch Force: Tethering Of Thick And Thin Filaments By Twitchin., Thomas M Butler, Marion J Siegman Jan 2010

Mechanism Of Catch Force: Tethering Of Thick And Thin Filaments By Twitchin., Thomas M Butler, Marion J Siegman

Department of Molecular Physiology and Biophysics Faculty Papers

Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini of the minititin twitchin (approximately 526 kDa). Some catch force maintenance car also occur together with cycling myosin crossbridges at submaximal calcium concentrations, but not when the muscle is maximally activated. Additionally, the link responsible for catch can adjust during shortening of …