Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Series

Biomechanical Phenomena

Articles 1 - 2 of 2

Full-Text Articles in Physiology

A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari Mar 2018

A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari

Biomedical Engineering Faculty Publications

The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set …


Using A Respiratory Navigator Significantly Reduces Variability When Quantifying Left Ventricular Torsion With Cardiovascular Magnetic Resonance, Sean M. Hamlet, Christopher M. Haggerty, Jonathan D. Suever, Gregory J. Wehner, Kristin N. Andres, David K. Powell, Richard J. Charnigo, Brandon K. Fornwalt Mar 2017

Using A Respiratory Navigator Significantly Reduces Variability When Quantifying Left Ventricular Torsion With Cardiovascular Magnetic Resonance, Sean M. Hamlet, Christopher M. Haggerty, Jonathan D. Suever, Gregory J. Wehner, Kristin N. Andres, David K. Powell, Richard J. Charnigo, Brandon K. Fornwalt

Electrical and Computer Engineering Faculty Publications

Background: Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion.

Methods: We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure …