Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Associative Learning Contributes To The Increased Water Intake Observed After Daily Injections Of Angiotensin Ii, Maggie Postolache, Jessica Santollo, Derek Daniels Oct 2017

Associative Learning Contributes To The Increased Water Intake Observed After Daily Injections Of Angiotensin Ii, Maggie Postolache, Jessica Santollo, Derek Daniels

Biology Faculty Publications

Daily injections of angiotensin II (AngII) cause a progressive increase of water intake that resembles a classically ascribed non-associative sensitization. Consistent with the presumption that the observed increase in intake was sensitization, we hypothesized that it resulted from a pharmacological interaction between AngII and its receptor. To test this hypothesis, and remove the influence of drinking itself, we implemented a delay in water access after injection of AngII (icv) on four consecutive ‘induction days,’ and then measured intake on the next day (‘test day’) when rats were allowed to drink immediately after AngII. The delay in water access effectively reduced …


Hibernator And Non-Hibernator Responses To Acute Changes In Water Intake, Sydni S. Andruskiewicz May 2017

Hibernator And Non-Hibernator Responses To Acute Changes In Water Intake, Sydni S. Andruskiewicz

All College Thesis Program, 2016-2019

Hibernating animals undergo dramatic changes in metabolic rates during torpor. One of most notable changes in these animals is the ability to maintain blood pressure and perfuse certain organs. Consequentially, blood perfusion to the kidneys is greatly decreased and the ability to concentrate urine halts. However, about once a week, torpor is interrupted and the animal becomes active to rewarm itself about once a week. This activity induces rapid regeneration of the extracellular osmotic gradient of the kidney, and allows urine to be concentrated. Nonetheless, regaining the extracellular osmotic gradient creates a potentially fatal consequence to the kidney cells. To …