Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physiology

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, …


Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich Jan 2018

Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich

Physiology Faculty Publications

We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine …


Novel Interconnections In Lipid Metabolism Revealed By Overexpression Of Sphingomyelin Synthase-1, Gergana M. Deevska, Patrick P. Dotson Ii, Alexander A. Karakashian, Giorgis Isaac, Mark Wrona, Samuel B. Kelly, Alfred H. Merrill Jr., Mariana N. Nikolova‑Karakashian Jan 2017

Novel Interconnections In Lipid Metabolism Revealed By Overexpression Of Sphingomyelin Synthase-1, Gergana M. Deevska, Patrick P. Dotson Ii, Alexander A. Karakashian, Giorgis Isaac, Mark Wrona, Samuel B. Kelly, Alfred H. Merrill Jr., Mariana N. Nikolova‑Karakashian

Physiology Faculty Publications

This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the …


Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo Jan 2017

Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo

Physiology Faculty Publications

The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are …