Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Using A Respiratory Navigator Significantly Reduces Variability When Quantifying Left Ventricular Torsion With Cardiovascular Magnetic Resonance, Sean M. Hamlet, Christopher M. Haggerty, Jonathan D. Suever, Gregory J. Wehner, Kristin N. Andres, David K. Powell, Richard J. Charnigo, Brandon K. Fornwalt Mar 2017

Using A Respiratory Navigator Significantly Reduces Variability When Quantifying Left Ventricular Torsion With Cardiovascular Magnetic Resonance, Sean M. Hamlet, Christopher M. Haggerty, Jonathan D. Suever, Gregory J. Wehner, Kristin N. Andres, David K. Powell, Richard J. Charnigo, Brandon K. Fornwalt

Electrical and Computer Engineering Faculty Publications

Background: Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion.

Methods: We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure …


Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition, Matthew C. Kinney, Sudarshan Dayanidhi, Peter B. Dykstra, John J. Mccarthy, Charlotte A. Peterson, Richard L. Lieber Mar 2017

Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition, Matthew C. Kinney, Sudarshan Dayanidhi, Peter B. Dykstra, John J. Mccarthy, Charlotte A. Peterson, Richard L. Lieber

Physiology Faculty Publications

Introduction: Muscles add sarcomeres in response to stretch, presumably to maintain optimal sarcomere length. Clinical evidence from patients with cerebral palsy, who have both decreased serial sarcomere number and reduced satellite cells (SCs), suggests a hypothesis that SCs may be involved in sarcomere addition. Methods: A transgenic Pax7‐DTA mouse model underwent conditional SC depletion, and their soleii were then stretch‐immobilized to assess the capacity for sarcomere addition. Muscle architecture, morphology, and extracellular matrix (ECM) changes were also evaluated. Results: Mice in the SC‐reduced group achieved normal serial sarcomere addition in response to stretch. However, muscle fiber cross‐sectional …