Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi Jan 2024

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …


Development Of Single Nanoparticle Optical Assays For Imaging Single Living Cells, William John Brownlow Jan 2006

Development Of Single Nanoparticle Optical Assays For Imaging Single Living Cells, William John Brownlow

Chemistry & Biochemistry Theses & Dissertations

Multi-drug resistance (MDR) has been reported in both prokaryotes and eukaryotes; the pathogenic gram-negative bacteria Pseudomonas aeruginosa can extrude a variety of structurally and functionally diverse substrates via a number of membrane transport systems leading to MDR. We have developed a novel nanoparticle assay to characterize both the membrane transport system composed of the MexAB-OprM efflux pump and the membrane permeability induced by antibiotics. Gold (Au) and silver (Ag) nanoparticles were investigated for use as probes to explore membrane transport in P. aeruginosa.

The surface plasmon absorption (color) of Au nanoparticle solutions was found to change in the presence …