Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah Jan 2021

Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah

Graduate Theses, Dissertations, and Problem Reports

Valorization of Xylan in Agroforestry Waste Streams.

Harrison Appiah

Microwave-assisted deep eutectic solvent and gamma-valerolactone metallic chloride catalyzed conversion of xylan to furfural were investigated using a 2x3 factorial experimental design at two levels of percent microwave power, reaction time, and catalyst concentration. The levels of each factor studied were (20%, 60% microwave power, 2, 4 minutes, and 10, 20mg) respectively. The effect of three metallic chloride catalysts (LiCl, FeCl3.6H20, CuCl2) on the conversion of xylan to furfural was also investigated. The gamma-valerolactone-ferric chloride sent system exhibited the highest mean yield of furfural (56.50%). The next highest furfural yield of …


Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott Jan 2019

Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott

Graduate Theses, Dissertations, and Problem Reports

Utilizing screen-printed carbon electrodes (SPCEs), a fast, simple, and sensitive approach toward the detection, identification, and quasi-quantitation of fentanyl was achieved both in an electrochemical cell and as a drop on the electrode surface. Electro-oxidation of fentanyl at the electrode was demonstrated using adsorptive stripping square-wave voltammetry between -0.5 V and +1.6 V with 100 mM Tris-HCl buffer at pH 8.5 as supporting electrolyte. Parameter optimization was conducted during method development to include supporting electrolyte and pH, electrochemical technique, pre-treatment and equilibration time, and various surface modifications. The simplest method utilizing an unmodified SPCE was determined to be appropriate for …