Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Neuroscience

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …


How Deep Is The Feature Analysis Underlying Rapid Visual Categorization?, Sven Eberhardt, Jonah Cader, Thomas Serre May 2016

How Deep Is The Feature Analysis Underlying Rapid Visual Categorization?, Sven Eberhardt, Jonah Cader, Thomas Serre

MODVIS Workshop

Rapid categorization paradigms have a long history in experimental psychology: Characterized by short presentation times and fast behavioral responses, these tasks highlight both the speed and ease with which our visual system processes natural object categories. Previous studies have shown that feed-forward hierarchical models of the visual cortex provide a good fit to human visual decisions. At the same time, recent work has demonstrated significant gains in object recognition accuracy with increasingly deep hierarchical architectures: From AlexNet to VGG to Microsoft CNTK – the field of computer vision has championed both depth and accuracy. But it is unclear how well …


Using Deep Features To Predict Where People Look, Matthias Kümmerer, Matthias Bethge May 2016

Using Deep Features To Predict Where People Look, Matthias Kümmerer, Matthias Bethge

MODVIS Workshop

When free-viewing scenes, the first few fixations of human observers are driven in part by bottom-up attention. We seek to characterize this process by extracting all information from images that can be used to predict fixation densities (Kuemmerer et al, PNAS, 2015). If we ignore time and observer identity, the average amount of information is slightly larger than 2 bits per image for the MIT 1003 dataset. The minimum amount of information is 0.3 bits and the maximum 5.2 bits. Before the rise of deep neural networks the best models were able to capture 1/3 of this information on average. …