Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computational Neuroscience

Ultra-High Field Magnetic Resonance Imaging For Stereotactic Neurosurgery, Jonathan Lau Apr 2019

Ultra-High Field Magnetic Resonance Imaging For Stereotactic Neurosurgery, Jonathan Lau

Electronic Thesis and Dissertation Repository

Stereotactic neurosurgery is a subspecialty within neurosurgery concerned with accurate targeting of brain structures. Deep brain stimulation (DBS) is a specific type of stereotaxy in which electrodes are implanted in deep brain structures. It has proven therapeutic efficacy in Parkinson’s disease and Essential Tremor, but with an expanding number of indications under evaluation including Alzheimer’s disease, depression, epilepsy, and obesity, many more Canadians with chronic health conditions may benefit. Accurate surgical targeting is crucial with millimeter deviations resulting in unwanted side effects including muscle contractions, or worse, vessel injury. Lack of adequate visualization of surgical targets with conventional lower field …


Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad Jan 2015

Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad

Electronic Theses and Dissertations

Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the …