Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computational Neuroscience

Understanding Individual Differences Within Large-Scale Brain Networks Across Cognitive Contexts, Katherine L. Bottenhorn Jun 2021

Understanding Individual Differences Within Large-Scale Brain Networks Across Cognitive Contexts, Katherine L. Bottenhorn

FIU Electronic Theses and Dissertations

Historically, human neuroimaging has studied brain regions “activated” during behavior and how they differ between groups of people. This approach has improved our understanding of healthy and disordered brain function, but has two key shortcomings. First, focusing on brain activation restricts how we understand the brain, ignoring vital, behind-the-scenes processing. In the past decade, the focus has shifted to communication between brain regions, or connectivity, revealing networks that exhibit subtle, consistent differences across behaviors and diagnoses. Without activation-focused research’s constraints, connectivity-focused neuroimaging research more comprehensively assesses brain function. Second, focusing on group differences ignores substantial within-group heterogeneity and often imposes …


Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond Feb 2015

Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond

Dartmouth Scholarship

Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from …